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INTEGRATING SEQUENCE ANALYSIS   
INTO EVENT HISTORY ANALYSIS:  

AN APPLICATION TO MIGRATION HISTORIES 
Philippe Bocquier, Ashira Menashe-Oren, Carren Ginsburg 

1 INTRODUCTION  
Event history analysis is rooted in survival analysis. Its objective is to analyse the occurrence of an event for individuals 

that are observed for different lengths of time until censoring time tc. A fundamental condition to validate the analysis 

is that censoring is non-informative, independent from the event of interest. Typically, censoring is the last time of 

observation, such as the day respondents were interviewed in a survey, which is independent from the events 

experienced by respondents. In some cases, for example in a cohort follow-up, respondents cease to be observed for 

various reasons (refusal, migration, death…) that are not independent from the event of interest. This is usually called 

attrition, or informative censoring. This is noticeably hard to handle and is the source of important biases.  

Informative censoring is the reason why it is a bad idea to examine retrospectively residential histories for the entire 

recorded life of respondents, i.e. at the time of the event of interest, te, or at time of censoring, tc, if the event was not 

experienced. The respondents who did not experience the event of interest until censoring time tc will necessarily have, 

on average, longer and more complex residential histories than those who experienced the event at time te < tc. 

Therefore, the preferred strategy is to capture residential histories through the residential status at each analysis time ta 

in the interval running from the first time the respondent was observed, t0, to the last observation time, te or tc. The 

variable capturing this residential status is called time-varying because its value can change at any analysis time ta. In 

other words, respondents’ residential status effect is compared without bias at the same time ta, and not at last 

observation time, te or tc. In contrast, the current migration or residential status only takes the last stage of sometimes 

complex migration itineraries. Hence accounting for long migration histories is meaningful.  

The description of complex migration histories has often been achieved through sequence analysis. Sequential analysis 

has been used mainly to characterise migration histories of respondents surveyed at a fixed time tc. The main advantage 

of sequential analysis is to account for the order, as well as the duration, of each sequence. Optimal matching is the 

preferred method to form clusters but cannot be applied on large samples. A random, representative sub-sample is 

generally drawn to perform sequence analysis. 

How can event history analysis, with its rigorous handling of censoring, work with sequence analysis that reflects 

complex itineraries normally at a fixed period of time? The objective of the paper is to find a workable solution to 

reconcile the two. We will also compare results using sequence analysis and other characterisation of migration 

itineraries to evaluate the effectiveness of these different procedures. As a side product, the paper also proposes a 

methodology to extend sequence analysis to the whole population, thus lifting the constraint of sub-sampling.    

2 MIGRATION HISTORIES: FROM MIGRATION STATUS TO 

SEQUENCES 
As migration is a repeatable event, the resulting residential histories and migration statuses can become very complex 

over a lifetime. In response to this complexity, researchers use different strategies. We illustrate these with some 

examples taken from a non-exhaustive sample of the migration literature addressing health issues. 

The last residence or the status acquired at last migration is the most obvious step in statistical analysis. Respondents’ 

residential status effect is compared without bias at time ta. This is capturing effect of order 1, or immediate effect, 

meaning effect of the status in the time unit just before ta. It is sufficient to measure the effect of migration status on 

another phenomenon occurring at time te. For example, by distinguishing between remaining-in-place, voluntary 
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migration, and forced displacement, as well as between periods spent “on the move” versus periods spent in residence, 

it is possible to analyse both the probability of the first pregnancy and the subsequent spacing of higher order 

pregnancies (Verwimp et al., 2020).  

However, the 1st order effect is generally not considered sufficient to reflect the impact of residential histories. Second 

order (or lagged) effects are often useful to better characterise migration status, as they account not only for the current 

residence or migration status (at destination), but also for the previous place of residence (at origin) or residence some 

years before (often five years). Typically, simple origin-destination comparison identifies migration status. For instance, 

rural-to-urban migration or intra-urban residential mobility which often lead to improved living conditions (Patel et 

al., 2020). The place of residence at birth is sometimes preferred to the previous place of residence (often due to data 

availability) but the effect remains 2nd order. Again, the resulting respondents’ residential status effect is measured 

without bias at time te or tc.  

The duration since migration and the category of the place of origin (e.g. capital, other urban, rural, foreign), sometimes 

interacting with each other, can also add more details. For example, Ginsburg et al. (2016) used migration status and 

duration of exposure to identify differences in mortality risk between non-migrants (the reference category), new in-

migrants, and return migrants, depending on exposure in the study area, as well as exposure outside the area in the 

case of return migrants. The assumption is then that the respondent retains in the current environment the memory 

of exposure to a previous environment, however defined by the researcher. In a meta-analysis on migration and cancer, 

cancer research was found to incorporate residential histories primarily focusing on incidence and estimating 

cumulative exposure (Namin et al., 2021). Another typical example is residence considered as exposure to a risk of 

infection disease, such as HIV. One study established that residence outside the rural study area is a strong predictor 

of HIV seroconversion in men, but not in women, and that residing in rural areas in a single or in multiple locations 

is a less significant risk factor for HIV acquisition compared to moving out of rural areas (Dobra et al., 2019). The 

long-term consequence of exposure is also sometimes of interest. For instance, urban residence during childhood and 

later in life may present cumulative risks for adult obesity (Kuuire et al., 2019).  

With access to more detailed data on residential histories and the statistical tools to analyse them, researchers have 

begun to combine current residence with last residence, penultimate residence, etc., back to residence n years ago (or 

at birth) to form complete residential (or migration) histories over a fixed period of time, or over a lifetime. In other 

words, the residential histories are supposed to reflect x-order effects, or residences t-n years ago. The assumption is 

that, since current status is the product of a history, all individuals retain memories of the sequence of past residences 

and adapt their future behaviour accordingly. The number of combinations increases considerably with the number of 

past residences and the categories that compose them.  

Whether of order one, two or higher, the resulting migration status variables are well suited to the analysis of a current 

situation, at a specific time t, or to the analysis of a situation over a fixed period (t-n, t). In either case, the analysis is 

cross-sectional even if the aim is to describe migration with a longitudinal perspective, in the past few years before t. 

Indeed, individuals must be observed over the same period of time in order to make meaningful comparisons. 

Generally, the sequences of residential histories will be standardised to cover the same period of n years before the end 

of observation or any other particular event of interest. For example, Chihaya et al. (2022) applied “sequence analysis to 

decade-long residence and workplace histories of newly arrived migrants in Sweden to identify a typology of combined residence-work 

trajectories”, and Gosselin et al. (2018) applied sequence analysis to build a typology of migrants’ residential pathways 

before and after HIV diagnosis. 

Residential histories going back to birth lead to heterogeneity in duration, unless respondents are observed at the same 

age (cohort analysis). Therefore, a fixed duration of n years is preferable when comparing cohorts of different ages 

(generations). The normalisation of duration is related to the issue of censoring and selection bias. A fixed duration is 

a way to control (or reduce) the heterogeneity of the analysis time at the time of censoring tc. If duration is not 

controlled, individuals with longer, and therefore on average more complex, itineraries will be over-represented, leading 

to selection bias, possibly survival bias (only those who survived the censoring time tc are represented). However, 

imposing a fixed duration shifts the problem of temporal heterogeneity to time tc. This temporal heterogeneity has to 

be controlled for, for example by age adjustment.  
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10-year life history of an individual from birth to time of survey at age 36 (sister 1): 

 

 

10-year life history of an individual from birth to time of death at age 21, with the same life history as sister1 (sister 2): 

 

10-year life history of an individual from birth to time of death at age 3, with the same life history as sister1 (sister 3): 

 

FIGURE 1: EXAMPLE OF A LIFE HISTORY WITH THREE 10-YEAR WINDOWS AT DIFFERENT TIME OF CENSORING 

(36-YEAR OLD, 21-YEAR OLD, AND 3-YEAR OLD) 

To illustrate this, Figure 1 shows the example of triplet sisters who co-resided from birth. The first sister having 

survived until the survey time tc (censoring), the second having died at 21, the third at 3. A fixed duration of 10 years 

would lead to very different migration histories (sister 1: rural-capital; sister 2: capital-other urban-rural; sister 3: rural), 

with different 1st order effect (capital, rural, rural) and 2nd order effect (rural, other urban, none). This is because 

migration histories are not identified at the same age for the three sisters, although they lived together in the same 

places from birth. Moreover, the migration history of the third sister will be discarded because it does not satisfy the 

minimum 10-year duration, thus leading to a survivor’s bias in our analysis of the migration effect on mortality.  

The above-mentioned duration standardisation strategy is suitable when it comes to a descriptive or exploratory 

analysis of residential histories or to measure the effect of migration status on another phenomenon observed at time 

tc. However, this strategy is inappropriate in an event history analysis (EHA) framework where the phenomenon (event) 

can occur at any analysis time ta, for example from birth or age 15 until the time of the survey tc. In such a framework, 

the variable qualifying the residential status must be strictly comparable at each analysis time ta along an observation 

period (t0, tc) that varies from one individual to another. In other words, neither the event nor the censoring occurs at 

the same time for all individuals.  

Sequence analysis has become a very popular statistical tool for classifying complex residential histories and reducing 

them to a manageable number of categories. Studies of residential histories through sequential analysis do not 

adequately address the issue of censoring, while EHA often limit residential histories to 1st or 2nd order effects. The 

main objective of this paper is to try and reconcile the migration history approach (descriptive, inductive) with EHA 

(causal, hypothetico-deductive). This involves finding a method to include complex, high order residential histories as 

a time-varying covariate in EHA, whatever the size of the population at stake. Our secondary objectives are to provide 

a proof of concept that can be applied to any type of history (residential or not, e.g. fertility, health, employment, etc.), 

to provide codes adaptable to specific analyses, and to give an illustration of this approach with real data, in this case, 

by linking migration and death histories using data from health and demographic surveillance (HDSS) sites. 

Following the above discussion, we identify four criteria to evaluate appropriateness of a method to identify migration 

effect on a time-dependent event. The method should: 

1. Account for censoring at time tc 

2. Account for migration status independently from event or status of interest at time te 

3. Account for the time-varying nature of migration status, from t0 to the last observation time, te or tc 

4. Account for lagged migration effects to the highest order possible. 

How does sequence analysis conform to these criteria? To account for censoring (not everyone is interviewed at the 

same age, or duration of exposure), it is not advised to account for the migration history over the life-time. Rather, 
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migration histories will be collated over a fixed period of time, say, the last 10 or 20 years before the last observation 

time, te or tc. The past exposure, prior to these 10 or 20 years, is controlled through another variable (e.g. age group).  

In this typical sequential analysis, the above criteria 1 and 4 are met. Exposure at censoring is neutralised by, say, 

controlling for age group, and maybe, place of birth (or at 15-year old), which represents the highest order migration 

effect prior the 10- or 20-year fixed period. However, the migration history is no longer independent from event or 

status of interest (criterion 2) since the longer the exposure (e.g. the older the respondent), the higher the selection. 

Respondents are selected by virtue of sheer survival to the time te at which the event or status of interested is recorded. 

It is therefore difficult to say whether the migration history reflects the conditions of the last n years before the survey 

or the respondent’s exposure (e.g. age). In addition, sequential analysis applied to a fixed time, te or tc, by design, does 

not account for time-varying migration status (criterion 3): migration history is fixed in time for each respondent.  

3 PROPOSED METHOD: TIME-VARYING MIGRATION HISTORIES 
Say that we observe individuals from birth to their death and that we believe that, as they age, these individuals’ memory 

encompasses mainly the last 10 years. Each day of their life, individuals would remember only the last 10 years of their 

migration history or, more realistically, only the last 10 years of their migration history would matter to explain their 

current behaviour. The Figure 2 represents three different 10-year time observation windows along the life of an 

individual.  

 

Entire life history of an individual from birth to past 36-year old: 

 

 

10-year life history observed at 10-year old: 

 

10-year life history observed at 23-year old: 

 

10-year life history observed at time of censoring: 

 

FIGURE 2: EXAMPLE OF A LIFE HISTORY AND THREE 10-YEAR WINDOWS AT DIFFERENT TIME (10-YEAR OLD, 23-

YEAR OLD, AND AT TIME OF CENSORING) 

The 10-year migration history starts to be observed from 10-year old, but between that age and the last observation 

date (censoring), there is an infinite number of 10-year migration histories that can be identified. In practice, the 

number of migration histories should be limited by the accuracy of the data. Typically, the threshold in the field is 

generally 3- or 4-months duration of residence. Only migration events that separate residence period of more than 3 

or 4 months would be recorded. Considering this level of accuracy, a higher threshold of 6-month should be used for 

analysis. Moreover, if the final aim is to construct sequences out of series of places of residence, it might be good for 

computation purpose to limit the series to 10.  
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For the simplicity of the demonstration, we will therefore assume that we are interested in migration histories depicted 

by sequences of 10 places of residence: 1, 2, 3… 9, and 10 years ago. Of course, depending on data accuracy and focus 

of the study, the period could be extended beyond or reduced below 10 years, and the categories of sequences as well. 

But, whatever the choice of time period and categories of sequences, how will migration histories be included as a 

time-varying independent covariate in the analysis? 

Let’s start with the example of the 10-year life history observed at 23-year old in Figure 1. The sequence can be 

translated as a series of codes (K: capital city; U: other urban; R: rural) representing the different types of residence 1, 

2, 3… 9, and 10 years ago (Figure 3). These codes can be indexed by the number of years before the observation time, 

e.g. U7 for “other urban 7 years ago”. Suppose that the migration from capital city to other urban occurred when the 

respondent was 14.4-year old and from other urban to rural at 19.7-year old. The 10-year sequence would then change 

at the anniversary of these migrations, i.e. when K9 turns into U9 at 23.4-year old, and also when U4 turns into R4 at 

23.7-year old. In other words, the sequence is time-varying according to any anniversary occurring in the past 10 years. 

 

 

 

 

 

 

FIGURE 3: EXAMPLE OF CODING A 10-YEAR LIFE HISTORY AT DIFFERENT AGES (23-YEAR OLD, 23.4-YEAR OLD, AND 

23.7-YEAR OLD) 

4 IMPLEMENTATION OF TIME-VARYING MIGRATION HISTORIES 
We test the value of time-varying migration histories by examining the risk of adult death according to migration 

history. We contrast and compare the use of 1) time-varying migration histories clustered using sequence analysis, 2) 

time-varying migration histories grouped manually, and 3) second-order classification. We detail the different steps 

taken for each of these methods below. 

4.1 DATA 
To test the solution of time-varying migration histories, we use longitudinal data from a Health and Demographic 

Surveillance System (HDSS) in South Africa, Agincourt. Agincourt is located in the rural north-east of South Africa, 

and the population in this area has been under surveillance since 1992. The HDSS data records events (births, deaths 

and migrations) with corresponding dates, for all individuals in the area. The data for Agincourt HDSS was obtained 

from INDEPTH i-share, and covers around 152,500 individuals. Life expectancy in the HDSS was around 73 for 

women and 68 for men in 1994, and this since declined significantly in the 2000s due to high HIV prevalence in the 

region, but recovered with rollout of antiretroviral treatment. Fertility in the HDSS has declined from 3.7 in 1994 to 

2.3 in 2009 (Kahn et al., 2012). The HDSS is also characterised by a relatively high proportion of temporary migrants 

(ranging from around 15% of women aged 15-34 to 60% of men aged 35-54 in 2000) (Collinson et al., 2006). 

Several variables are necessary for our analysis. We will use the same names and codes as in manuals initiated for 

HDSS, summarised in Table 1. These can be applied to any longitudinal setting. Each individual in the HDSS is 

assigned a unique identifier (IndividualID). An individual is considered a resident in the HDSS following enumeration, 

or birth, and after six months present on the site following an in-migration. Note, at the time of these events 

(enumeration, birth and in-migration), the individual is considered a non-resident, while at the time of death and out-

migration or end of observation, she is considered a resident. The HDSS continuously observes individuals who enter 

observation by enumeration (at baseline census), by birth or by in-migration. They may exit observation by death or 

 Rural  Capital city Other urban Rural  Capital city 
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out-migration. Since we consider whether death depends on the migration history of the last 10 years, we only use the 

last five years of observation in the available i-share data (1 January 2012- 1 January 2017), to allow for sufficient 

“history” for each individual. We focus on adults of both sexes aged 25-84: the lower boundary of this age range 

ensures we have a 10-year migration history since adolescence, and the upper boundary of the age range ensures we 

have enough deaths in our data. 

TABLE 1: VARIABLES’ NAME, LABEL AND VALUE LABELS 

Variable 
name 

Variable 
format 

Variable label Value labels 

ID string Individual ID None 

EventDate %tc Date at the end of episode None 

EventCode byte Event at the end of episode 1 ENU “Enumeration”  
2 BTH Birth”  
3 IMG “In-migration”  
4 OMG “Out-migration”  
5 EXT “Exit HH”  
6 ENT “Entry HH”  
7 DTH “Death”  
9 OBE “End of observation”  
50 “migration history” 

residence byte Residency status 0 “non-resident”  
1 “resident” 

datebeg_1 %tc Earliest recorded date at the beginning of episode None  

date_OBE %tc Latest recorded date at the end of episode None  

 

4.2 METHODS 
We use Stata MP 17 for all our analyses, and provide the programme in the appendix. However, nothing prevents 

readers from implementing the procedure in another software. 

4.2.1 TIME-VARYING MIGRATION HISTORIES 

We apply the migration history method simplifying things further compared to the example above by using only two 

codes for residence: 1 for resident, 0 for non-resident. The migration histories are therefore 10-digits codes made of 

series of 0 and 1. However, if one wants to account for different type of left-censoring, other codes will be needed to 

characterise periods before birth, immigration, or enumeration.  

The procedure is detailed in the program in the appendix. The heart of the program is a loop (n: 1 to 10) to capture 

the status n years ago. Each loop creates from the original file in long format (each residency episodes ordered by time 

of occurrence) a new file corresponding to the situation n years ago (lag files). A new code, of “migration history”, is 

created for EventCode indicating that only events before end of observation (OBE) should be lagged. Otherwise, the 

general case is that if the end of the episode falls after the last observation date, and the beginning of the episode falls 

before the last observation date, then, the indicator variable is coded “1”: A new variable is then needed to capture the 

residency status of the lagged records. The dates of the lagged events (i.e. except OBE) are lagged by n years, and no 

records post-OBE should remain in the database and therefore are deleted. Only records with lagged events and OBE 

are kept in the database, and this new file is saved. This new file is then merged according to time with the file from 

the last loop. For that, the program “tmerge.ado” must first be installed.1 We eventually create a new variable with the 

sequence of residency status over 10 years.  

4.2.2 SEQUENCE ANALYSIS IN SUB-SAMPLES 

Sequence analysis is based on the construction of a distance matrix between sequences. The matrix is used to group 

sequences in clusters. One computational issue with sequential analysis is that the distance matrix between individual 

sequences can be huge and intractable when exceeding a certain number of respondents. Sequential analysis is often 

                                                                 
1 net install https://github.com/bocquier/mighealth/blob/master/tmerge.ado 
A version of “tmerge” is also available in R and SAS.  
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used on representative sub-samples, or conducted separately on different sub-category of the sample, to the expense 

of direct comparison of clusters across sub-categories. We propose a way around this constraint. 

Figure 4 summarises the workflow from generating the time-varying histories to forming clusters for the full dataset. 

After generating lagged time-varying migration histories as explained in the previous section (step 1), to circumvent 

the constraint of drawing a single representative sample, we drew randomly 2% and 3% samples from the Agincourt 

data, giving us 40 sub-samples (step 2). In these sub-samples, we exclude the sequences of residence only (step 3): they 

will form a unique category of continuous residence over 10 years, coded “1111111111”, akin to what we consider 

permanent residents. Sequence analysis is conducted on the remaining sequences from each sub-sample (step 4) and 

then the resulting clusters for the whole population are combined (step 5), as detailed below.  

 
FIGURE 4: WORKFLOW DIAGRAM FOR MIGRATION SEQUENCE ANALYSIS 

Using time-varying sequences, one can identify clusters of migration histories with sequence analysis tools (step 4). To 

run sequence analysis in Stata, it is necessary to install the package “sq”. In order to group the migration histories, 

clustering is based on a distance matrix between all the different sequences representing migration histories. We use 

Wards linkage to identify 15 clusters for each sub-sample. This high number is the default value proposed by Stata 

(this can be changed to a higher value). This is far above the optimum number of clusters which one would obtain 

based on the highest Calinski/Harabasz pseudo-F value. However, the F-value is constrained by sample size. To make 

the selection of clusters less sample-dependent, we prefer to be less selective since we will eventually group the clusters 

in larger ones when merging all sub-samples together. It is indeed possible that a cluster is never big enough in any of 

the 40 sub-samples to be identified as a cluster using the F-value because of limited sub-sample size. This cluster would 

be systematically merged with another one. By retaining a maximum of 15 clusters per sub-sample, there is a higher 

chance of identifying small clusters represented across many sub-samples. In steps 5 to 7, we compare these clusters 

and group them when merging all sub-samples together. 

4.2.3 COMBINING THE CLUSTERS FOR THE WHOLE POPULATION 

We combine in one file the 15 clusters from sequence analysis for each of the 40 sub-samples (step 5). The clusters 

can be characterised by the proportion of time spent in the site (i.e. as resident) for each of the 10 years of the migration 

histories. Considering that there are only two codes, 0 or 1, for each year, a series of 10 proportions is sufficient (step 

6). Using the proportions for each year, we can compare the series of 10 proportions in one cluster with the series of 

another, by computing the sum of absolute deviations over the 10 years (step 7). In the case of 3 or more codes (e.g. 

1, 2, 3 for capital, other urban, rural), the series would be constituted of as many proportions as necessary to cover the 

alternative codes (e.g. with 3 codes we need 2 proportions for each year i.e. 20 proportions for 10 years; or 30 

proportions for 4 codes, etc.).  
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From the previous stage, we obtain a symmetric matrix of the sum of absolute deviations from each cluster to all other 

clusters in all sub-samples. Considering that we selected 15 clusters in each 40 sub-samples, this distance matrix has a 

600 X 600 dimension. We then form “clusters of clusters” using the distance matrix. We use Wards linkage to identify 

the clusters but here, instead of setting a maximum number of clusters, we use the highest Calinski/ Harabasz pseudo 

F-value out of a maximum of 15 clusters to identify the optimum number of clusters in the whole population (step 8). 

The sequences of 10-year residence only (permanent residence) form an extra cluster that we add. From hereon we 

refer to this method as the “sequence analysis” method. 

4.2.4 MANUAL CLUSTERING 

The clusters identified with the above adapted sequence analysis will be compared with the categories generated “by 

hand”. These manually identified categories organise the migration history sequences into conceptually meaningful 

sequences, constrained by frequency (see Table 2 for the distribution of categories). The most frequent sequence is 

“1111111111” – permanent residence over 10 years. The basic concepts that were used to form the categories are 

number of years spent in and numbers of years spent out. The potential sequences are ranked according to these 

sequences of in and out of site and according to frequency. Some complex combinations are grouped (under code 56 

in Table 2). Also, unique sequences that are the least frequent are grouped into a separate category (“other”) and 

represent 6.8% of the total person-years. 

TABLE 2: MANUAL CODING OF MIGRATION HISTORIES – AGINCOURT HDSS 

Sequence Code  Grouped 
code (17) 

Grouped 
code (8) 

Label Person-
years 

1111111111 0 0 0 Permanent residence 70978.10 

0000000000 1 1 1 6-12 month in-migrant 3276.58 

0000000001 2 2 1 1yr in-migrant 2965.77 

0000000011 3 3 2 2yr in-migrant 3241.25 

0000000111 4 4 2 3yr in-migrant 2876.11 

0000001111 5 5 2 4yr in-migrant 3194.70 

0000011111 6 6 3 5yr in-migrant 3562.59 

0000111111 7 7 3 6yr in-migrant 3059.22 

0001111111 8 8 3 7yr in-migrant 3442.39 

0011111111 9 9 3 8yr in-migrant 3574.61 

0111111111 10 10 3 9yr in-migrant 4004.59 

1111111110 11 11 4 6-12 month return, away for 1yr 502.92 

1111111100 12 11 4 6-12 month return, away for 2yr 435.19 

1111111000 13 11 4 6-12 month return, away for 3yr 317.33 

1111110000 14 11 4 6-12 month return, away for 4yr 262.95 

1111100000 15 11 4 6-12 month return, away for 5yr 249.45 

1111000000 16 11 4 6-12 month return, away for 6yr 210.54 

1110000000 17 11 4 6-12 month return, away for 7yr 207.38 

1100000000 18 11 4 6-12 month return, away for 8yr 176.86 

1000000000 19 11 4 6-12 month return, away for 9yr 200.26 

1111111101 20 12 4 1yr return, away for 1yr 566.60 

1111111001 21 12 4 1yr return, away for 2yr 394.25 

1111110001 22 12 4 1yr return, away for 3yr 283.33 

1111100001 23 12 4 1yr return, away for 4yr 227.71 

1111000001 24 12 4 1yr return, away for 5yr 208.71 

1110000001 25 12 4 1yr return, away for 6yr 183.89 

1100000001 26 12 4 1yr return, away for 7yr 178.98 

1000000001 27 12 4 1yr return, away for 8yr 171.06 

1111111011 28 13 4 2yr return, away for 1yr 663.47 

1111110011 29 13 4 2yr return, away for 2yr 468.30 

1111100011 30 13 4 2yr return, away for 3yr 345.97 

1111000011 31 13 4 2yr return, away for 4yr 296.16 

1110000011 32 13 4 2yr return, away for 5yr 256.46 

1100000011 33 13 4 2yr return, away for 6yr 230.19 

1000000011 34 13 4 2yr return, away for 7yr 226.54 

1111110111 35 14 5 3yr return, away for 1yr 608.64 

1111100111 36 14 5 3yr return, away for 2yr 431.05 

1111000111 37 14 5 3yr return, away for 3yr 339.25 

1110000111 38 14 5 3yr return, away for 4yr 309.04 

1100000111 39 14 5 3yr return, away for 5yr 253.05 
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1000000111 40 14 5 3yr return, away for 6yr 218.00 

1111101111 41 15 5 4yr return, away for 1yr 690.20 

1111001111 42 15 5 4yr return, away for 2yr 528.40 

1110001111 43 15 5 4yr return, away for 3yr 416.59 

1100001111 44 15 5 4yr return, away for 4yr 345.78 

1000001111 45 15 5 4yr return, away for 5yr 299.57 

1111011111 46 16 6 5yr return, away for 1yr 804.61 

1110011111 47 16 6 5yr return, away for 2yr 625.87 

1100011111 48 16 6 5yr return, away for 3yr 471.65 

1000011111 49 16 6 5yr return, away for 4yr 432.51 

1110111111 50 16 6 6yr return, away for 1yr 696.93 

1100111111 51 16 6 6yr return, away for 2yr 587.34 

1000111111 52 16 6 6yr return, away for 3yr 465.74 

1101111111 53 16 6 7yr return, away for 1yr 811.17 

1001111111 54 16 6 7yr return, away for 2yr 714.12 

1011111111 55 16 6 8yr return, away for 1yr 865.47 

0000000010 56 17 7 6-12 month return, away for 1yr, prior in-migrant 

198.91 
0000000110 56 17 7 6-12 month return, away for 1yr, prior in-migrant 

0000001110 56 17 7 6-12 month return, away for 1yr, prior in-migrant 

0000011110 56 17 7 6-12 month return, away for 1yr, prior in-migrant 

0000000100 57 17 7 6-12 month return, away for 2yr, prior in-migrant 59.91 

0000001011 58 17 7 2yr return, away for 1yr, prior in-migrant 86.85 

* 59 17 7 other 8900.52 

Total     131602.00 

 

Considering the large number of potential categories with many having few person-years, we collapse these into larger 

categories (with at least 1000 person-years each), reaching 17 categories (excluding permanent residents). We also 

combine the categories further to be in parallel with the categories identified with the second-order migration status. 

From hereon we refer to this method using migration histories as the “manual”, and the “manual reduced” for the 

collapsed categories. 

4.2.5 CLASSIC SECOND-ORDER MIGRATION CATEGORIES 

Following previous work (Ginsburg et al. 2015), we classify period of exposure in the last 10 years between non-

migrants (the reference category), new in-migrants, and return migrants. The in-migrants and return migrants are sub-

categorised in 3 categories depending on the number of years of exposure (<2, 2-4, 5+) in the HDSS, thus forming 6 

categories in addition to the non-migrants. In the case of return migrants, an extra covariate captures the number of 

years of exposure (<3, 3+) outside the HDSS, so the 3 categories of return migrants can be sub-divided by two. In 

total, we form 9 categories of migrants in addition to non-migrants. From hereon we refer to this method as the 

“classic” method. 

5 RESULTS: MIGRATION AND MORTALITY  
We applied the different methods to identify migration clusters (sequence analysis, manual, classic) in longitudinal data 

from Agincourt HDSS, South Africa, for adults aged 25-84. We then use Cox models to examine the risk of death 

according to each set of migrant categories, controlling for sex and period.  

5.1 COMPARISON OF THE THREE METHODS IN CHARACTERISING MIGRATION 

5.1.1 SEQUENCE ANALYSIS  

We clustered the ten-year migration histories using Wards hierarchical clustering for each of the 40 sub-samples, and 

then combined these sub-samples, obtaining “clusters of clusters”, through sequence analysis of the migration histories 

(step 8 of Figure 4). The optimal number of clusters according to the pseudo-F value was seven (excluding permanent 

residents). We characterised the clusters relying on the proportion of time spent in the HDSS using the mean residence 

status at each year over the last 10 years (Figure 4). To these clusters, we add the cluster of permanent residents.  

For example, the cluster “>8yr in-migration” in Figure 4 illustrates how for the last seven years the majority of 

individuals in the cluster were classified as resident (with very small standard deviations for these years). At the time 

of moving, in years eight to ten, the standard deviation is greater, and in year ten the mean residence status is close to 
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zero. This cluster can be characterised as capturing in-migration a relatively long time ago. The “recent return 

migration” cluster is another example: we see that up to around five years ago individuals were resident, then tended 

to spend time out of the HDSS, and then in the last year there is an upturn in the mean residence status, indicating 

return not so long ago. Since the timing of both leaving and returning is not exactly the same for all individuals in the 

cluster, the standard deviation is higher. This cluster also only consists of 9.5% of observations. The last cluster, where 

the mean residence status lies closer to one over the entire period with a return-like pattern, we classify as circular or 

temporary migration. This cluster is quite large, 20.5% of observations, and is typical of known circular migration 

patterns in Agincourt (Collinson et al., 2006).  

 

FIGURE 5: CLUSTERS OF 10-YEAR MIGRATION HISTORIES BASED ON SEQUENCE ANALYSIS 

5.1.2 MANUAL METHOD 

In Figure 5 we present a similar perspective of looking at the manually grouped migration histories as in Figure 4, using 

the mean residence status at each year over the last 10 years. Unlike the sequence analysis method, this method is more 

clear-cut in categorization. The first group clearly represents in-migration less than two years (all individuals were non-

resident beforehand, and therefore the standard deviation around these years is zero). Similarly, in the “5-9yr return 

migration” group all individuals are resident over the last five years, but returned at different times before then, and so 

the standard deviation around these earlier years is high. The category we classified as “other” with small numbers of 

various sequences seems to capture circular or temporary migration patterns, similar to the cluster identified through 

the sequence analysis method. 
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FIGURE 6: MIGRATION HISTORIES ACCORDING TO MANUALLY DEFINED CLUSTERS 

 
FIGURE 6: MIGRATION STATUS USING SECOND ORDER “CLASSIC” METHOD 
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5.1.3 CLASSIC METHOD 

The classic migration categories (second-order status) are depicted in Figure 6, parallel to Figures 4 and 5. What stands 

out the most from this method is the lack of a category of temporary or circular migration which is captured in the 

sequence analysis and manual methods. The groups in Figure 6 are also more clear-cut than the clusters obtained with 

the sequence analysis, though they overall appear comparable. For instance, there are recent in-migration and recent 

return migration patterns.  

5.1.4 COMPARING THE THREE MIGRATION “STATUS”  

Figures 4 to 6 suggest considerable overlap in the migration groups according to the three methods. We examine this 

further by examining the proportion of person-years common in the groups across the methods (Tables 3 and 4).  

Apart from a small number of person-years considered as “<4yr in-migration”, the “recent <2yr in-migration” cluster 

is very consistent with the classic “<2 year in-migration” group, with 98% of person-years in common (Table 3). Since 

the cut-offs of the categories on in-migration are not exactly consistent, we find that some classic categories are 

represented in two clusters. For instance, migrants in the classic “5yr+ in-migrant” category fall both in the “<6yr in-

migration” and “>8yr in-migration” categories – naturally. These two clusters capture 98% of all distant in-migration. 

In-migration in general is more commonly classified by all methods, while return migration appears to differ more 

across methods. What we consider as circular and temporary migration in the sequence analysis method appears to be 

classified frequently in the return migration categories of the second-order status (Table 3). 

TABLE 3: COMPARISON OF CLASSIC AND SEQUENCE ANALYSIS METHODS 

  Clusters based on sequence analysis 

  

Permanent 
resident 

Recent <2yrs 
in-migrant 

4yrs in-
migrant 

6yrs in-
migrant 

>8yrs in- 
migrant 

Mid-
period 
return 
migrant 

Recent return 
migrant 

Circular 
migrants Total 

C
la

ss
ic

 2
n

d
 o

rd
e
r 

m
ig

ra
ti

o
n

 s
ta

tu
s 

Permanent 
resident 

69,276.67 2.73 0.26 2.00 0.00 0.00 0.00 2.00 69,283.67 

99.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 

<2y in-
migrant 

0.00 2639.99 66.07 0.00 0.00 0.00 0.00 0.00 2,706.06 

0.00 97.56 2.44 0.00 0.00 0.00 0.00 0.00 100 

<5y in-
migrant 

0.00 1625.66 5892.48 250.66 3.09 1.91 0.00 1.01 7,774.81 

0.00 20.91 75.79 3.22 0.04 0.02 0.00 0.01 100 

5y+ in-
migrant 

223.31 0.00 0.00 4834.50 6674.51 0.00 1.00 4.98 11,738.30 

1.90 0.00 0.00 41.19 56.86 0.00 0.01 0.04 100 

<2y return 
migrant 

209.10 2832.99 466.30 176.83 211.66 2046.75 3285.30 1485.25 10,714.19 

1.95 26.44 4.35 1.65 1.98 19.10 30.66 13.86 100 

<5y return 
migrant 

393.84 1698.89 2246.12 499.01 400.62 3330.53 1182.70 2868.76 12,620.48 

3.12 13.46 17.80 3.95 3.17 26.39 9.37 22.73 100 

5y+ return 
migrant 

875.22 366.95 2.88 1932.04 4862.30 225.16 67.79 5154.38 13,486.73 

6.49 2.72 0.02 14.33 36.05 1.67 0.50 38.22 100 

Total 70978.15 9167.22 8674.11 7695.05 12152.18 5604.35 4536.80 9516.39 128,324.24 

  55.31 7.14 6.76 6.00 9.47 4.37 3.54 7.42 100 

 

The manual categories compare remarkably well with the classic categories of migration status when it comes to in-

migration with over 97% of person-years in common across in-migration categories (Table 4). However, return 

migration is not as systematically distributed. 43% of the person-years considered as “<2yr return migration” in the 

classic method are classified as “other” in the manual categories. There also appears to be some inconsistencies not to 

be disregarded in what is considered more than five-year return migration in the class method. Notably, 41.6% of 

person-years are considered distant in-migrants rather than return migrants when relying on the manual grouping. This 

is likely because the migration histories only consider the last ten years of the individual, while the classic method 

considers a longer time period. 
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TABLE 4: COMPARISON OF CLASSIC AND MANUAL REDUCED METHODS 

  Manual clusters (reduced to 7 categories) 

  

Permanent 
resident 

<2yrs in-
migrant 

2-4yrs in-
migrant 

5-9yrs in-
migrant 

<2yrs return 
migrant 

2-4yrs return 
migrant 

5-9yrs return 
migrant Other Total 

C
la

ss
ic

 2
n

d
 o

rd
e
r 

m
ig

ra
ti

o
n

 s
ta

tu
s 

Permanent 
resident 

69,276.67 0 0 1.998683 2.00 0 0 2.99 69,283.67 

99.99 0 0 0 0 0 0 0 100 

<2y in-
migrant 

0 5,315.08 148.97 0 0 0 0 16.05 5,480.10 

0 96.99 2.72 0 0 0 0 0.29 100 

<5y in-
migrant 

0 0 7,553.74 193.41 0.91 3.40 0.01 23.33 7,774.81 

0 0 97.16 2.49 0.01 0.04 0 0.3 100 

5y+ in-
migrant 

223.31 0 0 11,504.54 0 0 4.98 5.46 11,738.30 

1.9 0 0 98.01 0 0 0.04 0.05 100 

<2y return 
migrant 

209.10 927.28 101.43 86.76 4,963.84 64.30 53.43 4,810.59 11,216.73 

1.86 8.27 0.9 0.77 44.25 0.57 0.48 42.89 100 

<5y return 
migrant 

393.84 0 1,507.91 250.11 2,297.71 4,371.84 278.25 3,520.81 12,620.48 

3.12 0 11.95 1.98 18.21 34.64 2.2 27.9 100 

5y+ return 
migrant 

875.22 0 0 5,606.58 0 0 6,138.72 866.21 13,486.73 

6.49 0 0 41.57 0 0 45.52 6.42 100 

Total 70,978.15 6,242.36 9,312.06 17,643.40 7,264.47 4,439.55 6,475.40 9,245.45 131,600.80 

  53.93 4.74 7.08 13.41 5.52 3.37 4.92 7.03 100 

 

5.2 COX MODEL RESULTS  
When the clusters or categories from each of the three methods are then included in Cox models (with sex as a 

covariate) to estimate the risk of death among 25-84 year olds in Agincourt, we note that there is some relationship 

between migration status and adult death, consistent across models, and some that differ (Figure 7).  Regardless of the 

method used to capture migration, there seem to be similar results in terms of direction and strength of association. 

Return migrants tend to face an increased risk of death (between 19-44% higher depending on the model, with 

confidence intervals mostly above one). In all models except for the one using the classic method, recent in-migrants 

face a higher risk of death. In-migrants over five years ago have a lower risk of death in general – seemingly having 

time to adapt. However, in the manual method with multiple (18) categories, the hazard ratios for in-migration are not 

consistent in direction of effect. 

The sequence analysis method and the manual method are advantageous in classifying a unique category of what we 

characterise as temporary or circular migration (named “other” in the manual method). The manual method is 

advantageous in having multiple categories, potentially allowing to see whether categories (or clusters) are masking 

some effects. However, the confidence intervals for these categories are wide and the direction of effects is not clear. 
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FIGURE 7: COX MODELS OF DEATH ACCORDING TO MIGRATION “STATUS” 

6 CONCLUSION 
Sequence analysis seemed very promising, but proved complex when tested in an event history framework, even after 

lifting the sample size constraint. Our general advice for researchers who would think of using migration histories in 

an event history analysis framework would be to use sequence analysis if one has no prior hypotheses to test and know 

little on the relationship, provided that the analysis is performed on the whole population at risk (using our method of 

“clustering the clusters”), and not just on one sample as often done since the number of person-years would not be 

enough to identify any relevant effect. This will help identify the relevant clusters. In our analysis on Agincourt HDSS, 

this method identified the recent migrant effect (a reflection of selection prior to migration), an adaptation effect (with 

the reduction of the migrant- permanent resident gap over time), and higher mortality of return migrants (including 

circular migrants). From a methodological point of view, this paper gives a proof of concept: we combined two 

previously-separated life history methods, sequence analysis and event history analysis, by introducing time-varying life 

histories as a covariate in time-to-failure analysis. 

In situations with prior knowledge and informed hypotheses on the relationship, the manual categorisation of 

migration histories gives the optimum results, provided the categories are reduced to meaningful clusters. As shown 

above, identifying migration histories using simple criteria like duration in each state (by order: last, last but one, last 

but two…) allows the researcher to account for the actual frequency of each category. Duration (e.g. in years) being a 

continuous dimension, the categories can be ordered in a meaningful way. Most of all, the resulting categories can be 

handled whatever the size of the sample or population and the number of these categories, which will be well below 

the software’s limits. Therefore, this higher-order time-varying migration variable satisfies all the four evaluation 

criteria: the variable accounts for censoring, for migration status independently from event of interest, for the time-

varying nature of migration status, and for lagged migration effects to the highest order possible. With this method, 

the recent migrant effect, the adaptation effect and those of the return and circular migrants are all well identified.  

The 2nd order classic method is sufficient for most analyses, whatever the sample size, since it satisfies the three first 

criteria set above (censoring, independence from event of interest, time-varying) and partially the fourth (2nd order 
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effect only). However, this method underestimated the recent migrant effect and adaptation effect, and overestimated 

the return migration effect by failing to identify the circular migrants.  

Although our results based on HDSS data may not be generalisable to any analysis of the effect of migration on an 

outcome, it is striking how, in the migration-mortality relationship, the interpretation of our results based on cluster 

from sequence analysis or manual categorization of sequences (both of which identified a residual category interpreted 

as circular migrants) differ very little from the classic use of 2nd order time-varying variables, even without the circular 

migration category. A classic 2nd order time-varying variable “augmented” by a circular migrant category (identified by 

grouping migration histories of order 3 or more), would be quite efficient and easy to implement. However, with the 

benefit of hindsight and for this particular analysis on Agincourt HDSS data, the manual grouping seems to be the 

most efficient: it is more tedious than the classic grouping, and does involve some guided decision-making as regard 

to forming the circular migrant category, but it is still much less burdensome and computer-intensive than sequence 

analysis. It remains to be seen how the three different approaches can be implemented in other settings, with more 

complex migration histories or different outcomes, and which will prove most efficient. 
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8 APPENDICES 

8.1 STATA PROGRAMME: STEP 1 
Before running the following code, the program “tmerge.ado” must be installed (available at:  

https://github.com/bocquier/mighealth/) 

The heart of the program is a loop (n: 1 to 10) to capture the status n years ago. Each loop creates from the original 

file in long format (each residency episodes ordered by time of occurrence) a new file corresponding to the situation n 

years ago (lag files). 

forvalues n = 1/10 { 
capture erase lag`n'.dta 
use residency.dta 

 keep ID datebeg EventDate EventCode residence datebeg_1 date_OBE  
 sort ID EventDate EventCode 
 rename residence residence_lag`n'  
 * special cases: 

This is to code episode that runs from the start of observation (here, 1st January 2000) to birth: 
 replace residence_lag`n'=8 if EventCode==2 & residence==0 // 8 for "not born yet"  

This is to code episode that runs from the start of observation (here, 1st January 2000) to enumeration: 
 replace residence_lag`n'=7 if EventCode==1 & residence==0 // 7 for "not enumerated yet" 

A new code is created for EventCode indicating that only events before end of observation should be lagged: 
 bysort ID (EventDate EventCode): replace EventCode=50 if EventCode!=9  

A special case is when the birth date n years forward is greater than the last observation date (“date_OBE”):  
 tempvar postOBE  
 bysort ID (EventDate EventCode): gen `postOBE'= ///  

If the birth n years forward is greater than end of observation… 
 cond(residence_lag`n'==8 & Cmdyhms(month(dofC(EventDate)),day(dofC(EventDate)), /// 
 year(dofC(EventDate))+`n',hhC(EventDate),mmC(EventDate),ssC(EventDate))>=date_OBE, ///  

…then the indicator variable is coded “1”: 
 1, ///  

Otherwise, the general case is that if the end of the episode falls after the last observation date… 
 cond(Cmdyhms(month(dofC(EventDate)),day(dofC(EventDate)), /// 
 year(dofC(EventDate))+`n',hhC(EventDate),mmC(EventDate),ssC(EventDate))>date_OBE /// 

… and the beginning of the episode falls before the last observation date… 
 & Cmdyhms(month(dofC(datebeg)),day(dofC(datebeg)), /// 
 year(dofC(datebeg))+`n', hhC(datebeg), mmC(datebeg), ssC(datebeg))<date_OBE, /// then, 

…then the indicator variable is coded “1”: 
 1, /// else: 

Otherwise, the indicator variable is coded missing “.”: 
 .)) /// 

The variable “postOBE” only applies to events before the end of observation (coded “50” above): 
  if EventCode==50  

A new variable captures the residency status of the lagged records: 
 tempvar status_lag 

By dividing “residence_lag`n'” by “postOBE”, the new “status_lag” variable will be coded with the lagged residential status 
or with a missing value “.” if no lagged record: 
 egen `status_lag'=max(residence_lag`n'/`postOBE'), by(ID) 

Attribute the lagged status to the OBE record, otherwise the record retains the lagged residential status: 
 bysort ID (EventDate EventCode): replace residence_lag`n'= /// 
  cond(`status_lag'!=. & EventCode==9,`status_lag',residence_lag`n') 
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The records post-OBE are deleted from the database: 
 drop if `postOBE'==1 

The dates of the lagged events (i.e. except OBE) are lagged by n years: 
 replace EventDate=Cmdyhms(month(dofC(EventDate)),day(dofC(EventDate)), ///  
  year(dofC(EventDate))+`n',hhC(EventDate),mmC(EventDate),ssC(EventDate)) /// 
  if EventCode==50  

No records post-OBE should remain in the database and therefore are deleted: 
 drop if EventDate>date_OBE & EventCode==50  

Only records with lagged events and OBE are kept in the database: 
 keep if EventCode==50 | EventCode==9  
 rename EventDate EventDate_lag 
 rename EventCode EventCode_lag 

File remaining from the last but one loop is deleted: 
 local VeryOld = `n'-2 
 capture erase `hdss'_lag`VeryOld'.dta 

The new file is saved: 
 save `hdss'_lag, replace 
 local Old = `n'-1 
 clear   

The new file is merged according to time with the file from the last loop (“tmerge.ado” must be installed first): 
 tmerge ID /// 

`hdss'_lag`Old'(EventDate_lag`Old') `hdss'_lag(EventDate_lag) /// 
`hdss'_lag`n'(EventDate_lag`n') 

 replace EventCode=EventCode_lag if _File==2 
 label define eventlab 50 "Mig hist", modify 
 save, replace 
} // end of loop 

Delete unnecessary files after the loop: 
capture erase `hdss'_lag.dta 
forvalues n = 0/9 { 
 capture erase `hdss'_lag`n'.dta 
} 

Delete unnecessary records and variables after the loop: 
drop if EventCode==9 & EventDate<date_OBE 
drop EventDate_lag* _File date_OBE 

Rename and label variables: 
rename EventDate_lag EventDate 
replace EventDate=EventDate_lag10 
lab def residence 0 "non-resident" 1 "resident" /// 

6 "not observed yet" 7 "not enumerated yet" 8 "not-born yet", modify  
lab val residence_lag* residence  

Create a new variable with the sequence of residency status over 10 years. First a string version… 
capture drop mig_history 
gen str mig_history="" 
forvalues n = 1/10 { 
 replace mig_history= /// 

cond(residence_lag`n'==.," ",string(,residence_lag`n')) + mig_history  
} 
duplicates drop 

… then an alphanumeric version: 
capture drop mig_history_NUM 
gen mig_history_NUM=mig_history 
destring mig_history_NUM, replace 
format mig_history_NUM %10.0f 

Note that migration histories starting with non-residency episodes do not appear as 10-digit numbers: 
codebook mig_history_NUM  
 
sort CentreId ID EventDate EventCode 
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order CentreId ID DoB datebeg EventCode EventDate 
compress 
save, replace 

Check the results: 
browse Id EventCode residence EventDate residence_lag* mig_history mig_history_NUM  
 

8.2 STATA PROGRAMME: STEP 4 
For the sequence analysis, first ensure that the sq package is installed 
* ssc install sq 

 

sq works with long format, so first reshape the file  

keep IndividualId EventCode EventDate residence_lag* 
reshape long residence_lag , i(IndividualId EventDate EventCode) j(pos) 
 

The pos variable needs to be flipped so that the figures are read from left to right (10yrs ago to most recent) 

recode pos (1=10) (2=9) (3=8) (4=7) (5=6) (6=5) (7=4) (8=3) (9=2) (10=1), gen(pos_rev) 
 

Create a unique ID variable of individual + eventdate+code 

gen double  date = (EventDate)  
format date %20.0g 
egen int uniqID =concat(IndividualId date EventCode), punct(,) format(%20.0g) 
drop date 
 

Set the data for sequence analysis (trim drops missing values at beginning or end of sequence- but we shouldn’t have 

such cases) 

sqset residence_lag uniqID  pos_rev , trim   
 

Use the optimal matching with full option to cluster the sequences 

sqom, full  
sqclusterdat ,  keep(IndividualId EventDate EventCode pos residence_lag pos_rev uniqID )  
clustermat wardslinkage SQdist, name(wards) add 
 

For visualization of the potential clusters, a tree diagram (dendrogram), with n (here 30) branches  

cluster tree wards ,cutnumber(30) countin horiz  
 

To identify the optimum number of clusters (produces a table with F-value, for which the highest value indicates best 

number of clusters: 

cluster stop, var(_SQid) matrix(Fclusters) 
 

According to the highest value, generate the clusters (in this case 7) 

cluster gen grps= groups(9) , name(wards)    
 

Save file with the unique IDs and the clusters, to be merged back into the main dataset  

keep uniqID grps 
save mig_hist_clusters.dta, replace 
 

Use main file, and create again the unique ID 

gen double  date = (EventDate)  
format date %20.0g 
egen int uniqID =concat(IndividualId date EventCode), punct(,) format(%20.0g) 
drop date 
 

Then merge the file with the saved clusters, according to the unique ID: 

duplicates drop numId EventCode EventDate , force 
merge 1:1 uniqID using mig_hist_clusters 
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For “carpet” plots of the sequences by cluster: 

sqindexplot if grps!=0, by(grps) 
 
 

8.3 STATA PROGRAMME: STEP 6 
Proportion in residence for each migration year by cluster 

forval i=1/40 { 
 use ZA031_mighist_sub_samp_`i'.dta, clear 
 
 *create id variable of individual + eventdate+code 
 gen double  date = (EventDate)  
 format date %20.0g 
 egen int uniqID =concat(IndividualId date EventCode), punct(,) format(%20.0g) 
 drop date 
 
 * combining cluster info with full data 
 duplicates drop numId EventCode EventDate , force 
 merge 1:1 uniqID using mig_hist_clusters_`i'.dta 
 keep if _merge==3 

collapse (mean) residence_lag* , by(grps)  
reshape long residence_lag, i(grps) j(yr_mig) 
rename residence_lag mean_subs_`i' 
rename grps clusters 
save mean_of_clusters_`i'.dta, replace 

} 
use mean_of_clusters_1.dta, clear 
drop _merge 
forval i=2/40 { 
 merge 1:1 clusters yr_mig using mean_of_clusters_`i'.dta 
 drop _merge 
} 
save mean_of_clusters_all.dta, replace 

8.4 STATA PROGRAMME: STEP 7 
Sum of absolute deviation and distance matrix 

*new matrix for final SAD values  
matrix sadval = J(600, 600,0) 
 
*filling in the SAD values  
use mean_of_clusters_all.dta, clear 
forval i=1/40 { 

forval cl_orig=1/15 { 
  forval cl_dest=1/15 { 
   mkmat mean_subs_`i' if clusters==`cl_orig', matrix(v_`i'_`cl_orig') 
 
   local n=1 
   while `n' <=40 { 
    mkmat mean_subs_`n' if clusters==`cl_dest', matrix(v_`n'_`cl_dest') 
    
    *di "Origin:" "v_`i'_`cl_orig'" " Destination:" "v_`n'_`cl_dest'" 
    matrix diff = v_`i'_`cl_orig' - v_`n'_`cl_dest' 
                    mata: st_matrix("absval",abs(st_matrix("diff"))) 
                    * Compute Sum of Absolute Deviation b/w data & intrinsic distributions 
                    mata: X = st_matrix("absval") 
                    mata: st_matrix("SAD", colsum(X[.,1])) 
                    matrix sadval[(15*(`i'-1)) + `cl_orig', (15*(`n'-1))+ `cl_dest'] = SAD[1,1] 
    *matrix list sadval 
    local n = `n' + 1 
   }  // close while 
  } // clusters dest  
 } // clusters orig 
}  
mata: st_replacematrix("sadval", makesymmetric(st_matrix("sadval"))) 

 

 

 


