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Abstract 

The aim of this paper is to apply a Generalized Additive Models for Location Scale and Shape 

(GAMLSS) model, to analyse the distributive occurrences of blood pressure in Namibia. The model 

offers a flexible approach as it allows flexible modelling of the mean, variance, skewness and 

kurtosis. For the median parameter, blood pressure increased with age, BMI, glucose (SBP only) 

and   haemoglobin (DBP only) levels. In relation to the latter finding, the frequency in blood 

pressure adults was higher among middle class, male adults residing in urban areas, with no level 

of education, and with a higher alcohol consumption rate. The findings presented a negative 

relationship between high blood pressure and weight, as well as height, the BMI and DBP observed 

in the scale parameter. With the shape parameter, high blood pressure was associated with no 

attainment of education (SBP), increased BMI and alcohol intake (DBP).  
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1. Introduction  

Namibia is one of the sub-Saharan countries with concerning increases in hypertension cases. The 

country is experiencing a double burden of communicable and non-communicable diseases, 

coupled with an increasing urbanization, which further engenders the vulnerability of communities 

due to reduced health and wellbeing conditions (Ministry of Health and Social Services Namibia, 

2017). Non-communicable diseases NCDs in Namibia have affected the health and economic 

sectors in terms of medication and treatment expenditures, and accounted for approximately 41% 

mortalities of the population to date (World Health Organization, 2020). The prevalence of 

hypertension is also high  among adults aged 35 -64 , estimated to be 46% (Craig, Gage, & Thomas, 

2018).  Moreover, according to  the NDHS for 2013  44% of women and 45% of men aged 35-64 

were hypertensive (MoHSS and ICF International, 2014).  Globally, efforts have been made to 

mitigate the frequent succumbing of patients to hypertension, however the occurrences of this 

disease continue to increase. Recent studies have indicated that if hypertension is not treated it  

weakens the body’s immunity, making it susceptible to others dreadful diseases, such as coronary 

heart diseases, cardiovascular diseases, stroke, diabetes (World Health Organization, 2020) and the 

recent COVID 19 outbreak (Rodilla et al., 2020; Tadic et al., 2021). Therefore, it remains that a 



continuous development of statistical models is necessary and important for the on-going prediction 

of risk factors contributing to high blood pressure and the on-going monitoring of such factors.  

A significant challenge which is common in applied statistics is the selection of an appropriate 

model to estimate the relationship between a dependent variable and its determinants.  Researchers 

in this field of study have developed various regression models to assist in health-related modelling 

studies and vast amounts of focus have been given to parametric and nonparametric models.  

Several statistical methods have been utilized to identify the relationship between blood pressure 

and its contributing factors. These includes the Generalized Linear Models (GLMs) (Nelder & 

Wedderburn, 1972) provide a parsimonious approach to modelling linear relationships, while 

Generalized Additive Models (GAMs) (Hastie & Tibshirani, 1990) extend this to account for 

nonlinear relationships. Additionally, linear mixed models incorporate random effects to capture 

more complex relationships. However, some of these models prone to inconsistent estimates and 

limited flexibility, particularly in capturing various distributions and restricted to modelling only 

the mean of predictors, with variance, skewness, and kurtosis being implicitly modelled through 

their dependence on μ. Rigby and Stasinopoulos (2005) introduced Generalized Additive Models 

for Location, Scale, and Shape (GAMLSS) to address these limitations. GAMLSS offers flexibility 

by accommodating a wide range of distributions and allows for the simultaneous modelling of 

location, scale, and shape parameters. This paper will explore several statistical approaches used to 

identify the relationship of blood pressure with its contributing factors and deploy the model based 

on AIC and BIC. 

2. Material and method 

This cross-sectional study utilizes secondary data obtained from the 2013 Namibian Demographic 

Health Survey (NDHS). A total of 3095 men and women from 35 to 64 years old were included in 

the analysis. The methodological approaches explored include linear model (LM), GLM, GAMs 

and the GAMLSS.  

GAMLSS represents a semi-parametric regression model capable of accommodating a wider array 

of distributional assumptions for the response variable. It allows for the modelling of distribution 

parameters of the response variable as functions of explanatory variables, which can include linear, 

nonlinear, and smooth terms, as well as random effects. This model considers independent 

observations 𝑦𝑖 , 𝑖 =  1,2, … , 𝑛, with conditional probability density function 𝑓(𝑦𝑖 |𝜽𝑖) 

characterized by up to four distribution parameters 𝜽𝒊𝑻 = (𝜃𝑖1 , 𝜃𝑖2 , ⋯ 𝜃𝑖𝑝). These parameters 



include location (μ), scale (σ), skewness (ν), and kurtosis (τ). The GAMLSS model is defined as 

follows: 

(𝜽𝑘 ) = 𝜼𝑘 = 𝑿𝑘 𝜷𝑘 + ∑ 𝒁𝑗𝑘 𝛾𝑗𝑘

𝐽𝑘

𝑗=1

 , 𝑘 = 1,2,3,4                  

Which can be extended to modelling of the parameters under the following conditions:  

𝑔1(𝝁) = 𝜼1 = 𝑿1𝜷1 + ∑ 𝒁𝑗1 𝛾𝑗1   ,

𝐽1

𝑗=1

 

𝑔2(𝝈) = 𝜼2 = 𝑿2 𝜷2 + ∑ 𝒁𝑗2𝛾𝑗2   ,

𝐽2

𝑗=1

 

𝑔3(𝝂) = 𝜼3 = 𝑿3𝜷3 + ∑ 𝒁𝑗3 𝛾𝑗3

𝐽3

𝑗=1

  , 

𝑔4(𝝉) = 𝜼4 = 𝑿4𝜷4 + ∑ 𝒁𝑗4𝛾𝑗4

𝐽𝑘

𝑗=1

  , 

where 𝜇, 𝜎, 𝜈, 𝜏 corresponding to the mean, variance, skewness, and kurtosis. 𝑔𝑘 (∙) denotes a known 

monotonic link function that connect the distribution parameters k –th to the predictor 𝜼𝑖𝑘 , 𝜷𝑘
𝑇 =

(𝛽1𝑘 , 𝛽2𝑘, ⋯ 𝛽𝐽𝑘 𝑘 ) represents a parameter  vector of dimension of  𝐽𝑘, 𝑿𝑘  (fixed effect) and 𝒁𝑗𝑘 

(random effect) are design matrices of order 𝑛 × 𝐽𝑘 and 𝑛 × 𝑞𝑗𝑘 respectively. 𝛾𝑗𝑘  is a random 

variable of dimension  𝑞𝑗𝑘  that follows a normal distribution 𝒩𝑞𝑗𝑘
(𝟎, 𝑮𝑗𝑘

−𝟏), where 𝑮𝑗𝑘
−𝟏 is the 

generalized inverse of the symmetric matrix 𝑮𝑗𝑘 = 𝑮𝑗𝑘 (𝜆𝑗𝑘 ) of order a 𝑞𝑗𝑘  × 𝑞𝑗𝑘 and 𝜆𝑗𝑘  is vector 

of hyperparameters. 

GAMLSS models were employed using the RS algorithm, as detailed by Rigby and Stasinopoulos 

(2005), aiming to maximize the penalized log likelihood function. The selection of the most 

appropriate model for the data used the Generalized Akaike Information Criterion (GAIC) (Akaike, 

1983) mechanism, where the goodness of fit was assessed by adding the fitted global deviance to 

a fixed penalty 𝜅 for each effective degree of freedom utilised in the model. Thus, GAIC(κ) is 

defined as 𝐺𝐷 + 𝜅 𝑑𝑓, where 𝑑𝑓 represents the total effective number of degrees of freedom used 

in the model, and 𝐺𝐷  denotes the fitted global deviance. Additionally, diagnostic tools of residuals 

were employed to assess the adequacy of the model. Finally, a comparison between the GAMLSS 



model and classical regression models (LM, GLM, and GAM) was conducted to ascertain the 

flexibility of each approach. This comparison utilised the Akaike Information Criterion (AIC) 

(Akaike, 1974), the Bayesian Information Criterion (BIC) (Schwarz, 1978) and Anderson darling 

test. 

3. Results  

3.1 Distribution of blood pressure 

In our quest to find an appropriate model for predicting blood pressure, we began by examining its 

distribution. This provided insight into which distribution would be most suitable for modelling 

blood pressure. Figure 1 illustrates the distributions of both systolic blood pressure (SBP) and 

diastolic blood pressure (DBP). The histogram for SBP reveals a heavily right-skewed distribution, 

while DBP appears symmetric. Kurtosis is evident in both histograms. Furthermore, we utilized 

box plots and scatter plots to explore the relationships between SBP/DBP and explanatory 

variables. Among categorical variables, we observed variation and positive skewness.  

  

Figure 1 Histogram of SBP/ DBP 

 

3.2 Application of GAMLSS modelling blood pressure 

In this section, we showcased the application of the GAMLSS model in analysing blood pressure 

data from Namibia. Initially, we focused on selecting distributions suitable for the dataset, 

considering that blood pressure values are positive and continuous. Only positive continuous 

distributions were fitted to explore the effects of various explanatory variables. Selection of the 



appropriate distribution involved fitting and diagnosing the model.  Among the continuous positive 

models fitted, the Generalized Gamma (GG), Box-Cox Cole Green original (BCCGo), and Box 

Cox Power Exponential original (BCPEo) models demonstrated superior performance for 

modelling SBP. For estimating mean DBP, appropriate models included Box Cox Power 

Exponential (BCPE), BCPEo, and Box Cox t (BCT). Nonlinear relationships observed in the data 

prompted the inclusion of additive functions in the models to accommodate the additive predictor 

𝜂𝑘 . Penalized splines were employed to address nonlinear relationships. 

Selection of the link function was confined to default options for each distribution. Terms for the 

six models were selected for each distribution parameter using a stepwise selection procedure to 

identify ideal terms for estimating 𝜇, 𝜎, 𝜈  and 𝜏. The stepGAIC function in the gamlss package 

facilitated this selection. Additionally, the drop1 function in GAMLSS was utilized to identify and 

remove highly insignificant terms. The selection of suitable effective degrees of freedom for 

penalized spline functions and the hyperparameter 𝜆 employed an automatic procedure (Rigby & 

Stasinopoulos, 2004). 

Evaluating model adequacy is crucial for assessing the strengths and weaknesses of the regression  

model. Diagnostic tools for the six fitted models were examined using normalized quantile 

residuals developed by Dunn and Smyth (1996). These residuals assume a standard normal 

distribution when the model is adequate, regardless of the distribution they follow. Based on Figure 

2, Table 1, and a GAIC value of 26714.34, the BCPEo distribution demonstrated reasonable fit for 

approximating SBP. However, for DBP, GAIC favored the BCPE distribution, as shown in Table 

1. Although the residuals of BCT seemed appropriate for DBP in terms of residuals, GAIC did not 

indicate superior fit compared to BCPE. The study observed that residuals of BCPEo and BCPE 

behaved well, with mean close to zero, variance approximately one, skewness coefficient close to 

zero, and kurtosis coefficient near 3.  

Their normalized quantile residuals exhibited approximate normal distribution, indicating that both 

models provided excellent estimates for blood pressure. This analysis was further supported by the 

Anderson-Darling test, where the p-values for the BCPEo and BCPE models were 0.19 and 0.78, 

respectively. Since these p-values were greater than 0.05, it suggests that the normalized quantile 

residuals followed a normal distribution. Additionally, other diagnostic tools were employed to 

detect any potential misspecifications in the models. Worm plots, introduced by van Buuren and 

Fredriks (2001), were utilized to scrutinize residuals across different regions and identify any 

regions where the explanatory variables did not adequately fit the data. 



Table 1: Summary of quantile residuals for fitted SBP models and DBP models 

 SBP DBP 

Moments GG BCCGo BCPEo BCPE BCPEo BCT 

Mean 0.00 0.00 0.00 0.00 0.00 0.00 

Variance 1.00 1.00 1.00 1.00 1.00 1.00 

Coef. of skewness 0.00 0.02 0.01 0.00 0.00 0.00 

Coef. of kurtosis 2.78 2.76 2.99 2.97 2.97 3.00 

Filliben correlation coef. 1.00 1.00 1.00 1.00 1.00 1.00 

Anderson darling test 

p-value 

0.01 0.01 0.19 0.78 0.81 0.97 

GAIC 26718.09 26718.18 26714.34 24187.95 24188.80 24255.47 

 

These detrended Q-Q plots illustrate potential deviations from normality. Figures 2 and 3 revealed 

that all points for the BCPEo and BCPE models fell within the 95% pointwise confidence interval 

(represented by two elliptical curves) and displayed a flat shape, indicating no evidence of model 

misspecification for these two models. Conversely, for the GA and BCCGo models, a few 

observations appeared inside the upper elliptical curve, suggesting less satisfactory performance 

compared to the BCPEo worm plot. Moreover, while the BCT model demonstrated a nearly perfect 

fit for residuals as depicted in Figure 3 and the worm plot, it was slightly inferior in terms of 

goodness of fit. 

 

 

 



 

Residuals plots of SBP based on the GA 

 

Residuals plots of SBP based on the BCCGo 

 

 

Residuals plots of SBP based on the BCPEo 

 

Worm plots of SBP (GA) 

  

Worm plots of SBP (BCCGo) 

 

Worm plots of SBP (BCPEo) 

Figure 2: Model diagnostic of SBP 



 

Residuals plots of DBP based on the BCPE 

 

Residuals plots of DBP based on the BCPEo 

 

 

Residuals plots of DBP based on the BCT 

 
Worm plots of DBP (BCPE) 

  
Worm plots of DBP (BCPEo) 

 
Worm plots of DBP (BCT) 

Figure 3: Model diagnostic of DBP 

 



3.3 Model selection 

Statistical regression models were compared in this study to determine the most suitable approach 

for modeling blood pressure, with model selection criteria aimed at identifying the best asymmetric 

model among competing alternatives. Table 2 presents the goodness of fit for four different classes 

of regression models using AIC and BIC values as criteria for assessment. The linear model (LM) 

assumes a linear relationship and normal distribution, but in this study, the blood pressure did not 

follow a normal distribution, thereby violating the assumption of normality. This limitation was 

evident by p-value <0.01 and AIC and BIC values compared to other classical models. The GLM 

addressed normality, homoscedasticity, and skewness in the response variable (SBP/DBP), but it 

had its shortcomings, particularly in handling nonlinear structures in some continuous variables. 

The GAM was employed to model nonlinear predictors using smoothing functions but was 

constrained by its restriction to exponential family distribut ions. 

Table 2 Comparing the Models for blood pressure estimates. 

Class SBP DBP 

AIC  BIC P-value AIC  BIC P- value 

LM 27147.33 27231.86  < 0.01*** 24330.09 24396.50  < 0.01*** 

GLM  26908.9 26999.47  < 0.01*** 24353.13 24431.62  < 0.01** 

GAM 26837.81 26969.82  < 0.01*** 24285.79 24390.23 0.04 

GAMLSS 26714.34 26942.22 0.19 24187.95 24380.44 0.78 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1    

According to the Anderson-Darling test, neither the LM, GLM, nor GAM models were deemed 

adequate, as the distribution of blood pressure did not align with exponential family distributions. 

Unlike LM, GLM, and GAM, the generalized additive models for location, scale, and shape 

(GAMLSS) approach considered the variance, skewness, and kurtosis in terms of predictors, 

offering greater flexibility. Relaxing some assumptions of the models and including smoothing 

functions, as seen in GAM, significantly improved AIC and BIC values. Furthermore, allowing the 

model to be more flexible by modeling scale and shape parameters (σ, ν, τ) and permitting blood 

pressure to follow any distribution resulted in a substantial decrease in AIC and BIC values.  

 

The GAMLSS model emerged as the preferred approach for estimating SBP and DBP, with lower 

AIC and BIC values compared to other competing models. This preference was corroborated by 

residual plots, which appeared normal (Figure 2 and Figure 3). Additionally, the Anderson-Darling 



test supported the adequacy of the GAMLSS model, while other models (LM, GLM, and GAM) 

violated their assumptions. 

 

3.4 Estimates of blood pressure 

As established in the preceding section, the GAMLSS model emerged as the appropriate regression 

model for predicting blood pressure, with accurate estimates based on the BCPEo (SBP) and BCPE 

(DBP) distributions. These distributions, BCPEo and BCPE, offer h igh flexibility by allowing 

modeling for location, scale, skewness, and various types of kurtosis (leptokurtosis, platykurtosis, 

and mesokurtosis). 

Table 3 presents the estimates of the GAMLSS using BCPEo and BCPE distributions for the mean, 

dispersion, and shape parameters. Given the involvement of smoothers in our analysis, Table 3 may 

not provide accurate information for testing the significance of the terms. The t -test in Table 3 

examines the linear part in the explanatory variables rather than testing the smoothing effects. To 

accurately test the significance of the covariates in the model, the generalized likelihood ratio test 

(GLRT) was employed as a more suitable criterion compared to the Wald test (t -value), which is 

useful for testing statistical significance in the linear term rather than the overall smoothing term 

for p-spline functions. 

 

Table 4 indicated factors influencing SBP and DBP on different distribution parameters. For the 

median parameter μ, SBP was significantly associated with residence, wealth quantiles, education, 

sex, alcohol consumption, age, BMI, glucose, and hemoglobin. The scale parameter σ (SBP) was 

significantly linked with age, weight, BMI, height, and alcohol consumption. Additionally, 

skewness (SBP) parameter ν was influenced by educational attainment level. Similarly, for DBP, 

residence, wealth, education, alcohol consumption, age, BMI, and hemoglobin significantly 

contributed to the median, while scale parameter σ of DBP was significantly associated with BMI, 

wealth, age, and height, and skewness parameter ν was linked with BMI. Education attainment 

level had an effect on DBP based on the kurtosis parameter τ. 

 



Table 3: Estimates of blood pressure using GAMLSS model 

 

 

Covariates of SBP Estim Std. E t value Pr(>|t|)      Covariates of DBP Estim Std.E t value Pr (>|t|) 

μ Coefficient using a log link function 𝜇 Coefficient using a log link function 

(Intercept) 4.48 0.03 141.88 < 0.01 *** (Intercept) 53.93 2.37 22.80 < 0.01 *** 

Residence (Rural vs Urban) -0.02 0.01 -3.64 < 0.01 *** Residence (Rural vs Urban) -2.00 0.50 -4.04 < 0.01 *** 

Wealth (Middle vs Poor) 0.01 0.01 1.58 0.11 Wealth (Middle vs Poor) 0.98 0.61 1.60 0.11 

Wealth (Rich vs Poor) -0.01 0.01 -1.65 0.10. Wealth (Rich vs Poor) -0.86 0.65 -1.33 0.18 

Education (Pri. vs No Ed.) -0.02 0.01 -1.57 0.12 Education (Pri. vs No Ed.) 0.00 0.69 -0.01 0.10 

Education (Sec. vs No Ed.) -0.03 0.01 -3.34 < 0.01 *** Education (Sec. vs No Ed.) -0.58 0.72 -0.81 0.42 

Education (Hig. vs No Ed.) -0.06 0.01 -4.02 < 0.01 *** Education (High. vs No Ed.) -3.29 1.00 -3.30 < 0.01 *** 

Sex (Female vs Male) -0.03 0.01 -5.52 < 0.01 *** Alcohol(Yes vs No) 1.33 0.43 3.11 < 0.01** 

Alcohol(Yes vs No) 0.02 0.01 3.15 < 0.01** pb(Age) 0.08 0.03 2.67 0.01** 

pb(Age) 0.00 0.00 9.59 < 0.01 *** pb(Glucose) 0.52 0.04 13.36 < 0.01 *** 

pb(BMI) 0.00 0.00 10.21 < 0.01 *** pb(Hemoglobin)       0.93 0.11 8.27 < 0.01 *** 

pb(Glucose) 0.00 0.00 1.91 0.06. 𝜎 Coefficient using a log link function 

pb(Hemoglobin)       0.01 0.00 4.72 < 0.01 *** < 0.01 *** -1.13 0.27 -4.18 < 0.01 *** 

𝜎 Coefficient using a log link function pb(BMI) -0.01 0.00 -6.17 < 0.01 *** 

Intercept) -4.65 1.01 -4.62 < 0.01 *** Wealth (Middle vs Poor) -0.12 0.04 -3.44 < 0.01 *** 

pb(Age) 0.01 0.00 6.27 < 0.01 *** Wealth (Rich vs Poor) -0.04 0.03 -1.36 0.18 

pb(Weight) -0.02 0.01 -3.22 < 0.01** pb(Age) 0.00 0.00 2.36 0.02 * 

pb(BMI) 0.05 0.02 2.77 < 0.01** pb(Height) -0.35 0.15 -2.35 0.02 * 

pb(Height) 1.52 0.60 2.52 0.01* 𝜈  Coefficient using an identity link function 

Education (Pri. vs No Ed.) -0.08 0.04 -2.08 0.04 * (Intercept) 0.90 0.42 2.17 0.03* 

Education (Sec vs No Ed.) -0.12 0.04 -3.00 < 0.01** pb(BMI) -0.02 0.02 -0.98 0.33 

Education (Hig. vs No Ed.) -0.09 0.06 -1.50 0.13 𝜏  Coefficient using a log  link function 

     (Intercept) 0.57 0.06 9.71 < 0.01 *** 

𝜈  Coefficient  using an identity link function Alcohol(Yes vs No) 0.22 0.08 2.62 0.01 ** 

(Intercept) 0.02 0.24 0.08 0.94      

Education (Pri. vs No Ed.) -0.76 0.29 -2.62 < 0.01**      

Education (Sec. vs No Ed.) -0.99 0.29 -3.44 < 0.01 ***      

Education (Hig.vs No Ed.) -1.08 0.47 -2.28 0.02 *      

𝜏  Coefficient using a log  link function      

(Intercept) 0.82 0.05 15.95 < 0.01 ***      



 

Table 4 Significance testing of SBP/DBP using GAMLSS model 

SBP AIC LRT Pr(Chi)      DBP AIC LRT Pr(Chi)     

𝝁 terms 𝝁 terms 

Residence 26726 13.25 < 0.01 *** Residence       24202 14.71 < 0.01 *** 

Wealth 26722 12.39 < 0.01** Wealth          24193 9.44 0.01 **  

Education 26729 20.95 < 0.01 *** Education       24197 15.29 < 0.01** 

Sex 26740 27.11 < 0.01 *** Alcohol         24196 10.08 < 0.01** 

Alcohol 26722 9.50 < 0.01** pb(Age)         24201 18.26 < 0.01 *** 

pb(Age) 26836 130.62 < 0.01 *** pb(BMI)         24369 184.59 < 0.01 *** 

pb(BMI) 26844 137.20 < 0.01 *** pb(Hemoglobin)  24252 66.50 < 0.01 *** 

pb(Glucose1) 26716 4.29 0.05 *   𝝈 terms 

pb(Hemoglobin) 26738 29.92 < 0.01 *** pb(BMI)     24234 54.07 < 0.01 *** 

𝝈 terms Wealth      24195 10.47 < 0.01** 

pb(Age)     26752 41.73 < 0.01 *** pb(Age)     24194 10.34 0.01 **  

pb(Weight)  26719 9.61 0.01 *   pb(Height)  24191 5.30 0.03 *  

pb(BMI)     26721 14.07 0.01**  𝝂 terms 

pb(Height)  26717 8.34 0.03 *   pb(BMI) 24191 7.05 0.03* 

Alcohol     26717 8.43 0.03* 𝝉 terms 

𝝂 terms Alcohol 24192 5.94 0.01* 

Education     26720 11.27 0.01 ** 
    



Nonparametric smoothing functions cannot be described simply in mathematical form, hence the 

effect of the smooth function is depicted in Figure 4 and Figure 5. Term plots in the GAMLSS 

package were used to illustrate the effects of covariates on each dist ributional parameter. These 

plots provide a clearer depiction of how the coefficients β change against the covariates. Figure 4 

and Figure 5 highlight the impact of different covariates on SBP and DBP with respect to their 

distributional parameters. Blood pressure increases with age, BMI, glucose (SBP only), and 

hemoglobin (DBP only) for the median parameter. Additionally, increased blood pressure is noted 

among adults living in urban areas, with no education, middle-class individuals, alcohol consumers, 

and male adults (SBP). The scale parameter shows that blood pressure decreases with weight 

(Figure 4, BMI, and height (Figure 5). With the shape parameter, blood pressure is associated with 

education (SBP), BMI, and alcohol intake (DBP). Weight and height were not significant with 

respect to the location parameter μ, but significant with the scale parameter, possibly due to 

dispersion in the response variable. Skewness parameter has a higher effect on education level and 

SBP, indicating that blood pressure reduces with education level. The skewness parameter of DBP 

suggests that adults who consume alcohol are at greater risk of hypertension. Smoking or marital 

status did not influence blood pressure in Namibia. Furthermore, nonlinear relationships can be 

observed in BMI, hemoglobin, and age. 

The same covariates identified for the location parameter μ of the GAMLSS model for SBP were 

also identified for LM. Additionally, the nonlinear effect on the location parameter μ for both SBP 

and DBP assumed a similar form as that obtained for GAM. 



 

 

Figure 4: Estimated effect of smoothing function of the BCPEo 



 

Figure 5: Estimated effect of smoothing function of the BCPE 

 

4. Discussion 

A multitude of regression models have been developed since the 19th century to address prediction 

uncertainties. However, some of these models may prove inadequate in representing the data, 

leading to flawed predictions and interpretations of results. This study delved into how LM, GLM, 

GAM, and GAMLSS were employed in predicting blood pressure in Namibia, aiming to identify 

the most suitable model for estimating blood pressure. It became evident that LM and GLM were 

not adequate, as they violated their model assumptions. Additionally, GAM lacked flexibility in 

terms of goodness of fit, and the chosen distribution for modeling was unsatisfactory, as depicted 

in Figure 1, where kurtosis in the response variable was not accounted for. Consequently, based on 



the study's findings, the GAMLSS model emerged as the only model that adhered to its statistical 

model assumptions. Through judgment mechanisms employing AIC, BIC, and diagnostic tools, 

GAMLSS was deemed the best fit for estimating blood pressure, effectively overcoming limitations 

associated with other models. 

 

The estimated GAMLSS model revealed significant associations between blood pressure and 

various factors, including residence, wealth quintiles, education, sex, alcohol consumption, age, 

BMI, glucose, height, weight, and hemoglobin. Notably, adults residing in urban areas were more 

prone to increased blood pressure compared to rural residents, a trend consistent with findings from 

studies conducted in other geographical contexts such as studies conducted in Malawi (Price et al., 

2018), Nigeria (Omisore et al., 2018) and Ethiopia (Abebe et al., 2015). Elevated blood pressure in 

urban areas could be attributed to unhealthy lifestyle behaviors, socio-economic stresses linked 

with urban living, environmental changes, and social stressors (Craig et al., 2018; Ibrahim & 

Damasceno, 2012). 

Additionally, this study observed higher blood pressure among middle-class individuals and poorer 

adults aged between 35-64 years, contrary to some previous studies. The research conducted by 

Antignac et al. (2018) indicated that in low-income areas of sub-Saharan Africa, individuals with 

lower economic status faced a greater risk of hypertension compared to those in middle- and higher-

income brackets. Conversely, Sharma et al. (2021), in their study in Mthatha town (South Africa), 

found a positive association between higher income levels (≥R1000) and hypertension. 

Furthermore, individuals with no educational background exhibited higher blood pressure levels, 

aligning with findings by Chen and Tan’s study (2013) attributing this to a lack of awareness and 

understanding of hypertension risks and preventive measures. 

 

Elevated SBP was found to be more prevalent among males than females, consistent with several 

other studies by Saka et al. (2020), Alhawari et al. (2018) and Craig et al. (2018). However, females 

showed higher diastolic blood pressure compared to males. This discrepancy could be attributed to 

gender-specific lifestyle choices, work nature, and familial responsibilities. Moreover, alcohol 

consumption and higher BMI were identified as risk factors for hypertension, consistent with the 

study by Craig et al. (2018).  



Age emerged as a significant contributor to elevated blood pressure, especially among adults aged 

35-64, in line with findings of Craig et al. (2018) and Hosseini et al. (2015). Aging-related 

physiological changes, including arterial stiffness and neurohumoral dysfunction, were implicated 

in the escalation of blood pressure. 

 

Additionally, the study revealed positive associations between glucose levels and both SBP and 

DBP, consistent with prior research linking hyperglycemia and metabolic disorders to increased 

blood pressure. Moreover, hemoglobin levels were positively associated with DBP, with a negative 

association observed for SBP at lower hemoglobin levels, aligning with findings from other studies. 

However, smoking showed no association with blood pressure levels in the final model, suggesting 

that further investigation with a larger sample size may be warranted to elucidate the potential 

impact of smoking on blood pressure in Namibia. 

 

5. Conclusion and Recommendations 

This study introduced the GAMLSS model as a robust regression framework for estimating blood 

pressure in Namibia. Unlike traditional regression models, GAMLSS offers versatility by 

accommodating a wide array of distributions for the response variable (blood pressure) and 

explicitly modeling its mean, dispersion, skewness, and kurtosis. This model allows for the 

consideration of both linear and nonlinear relationships, as evidenced by the non-linear association 

between BMI and blood pressure depicted in Figure 4 and Figure 5. Comparisons with other 

regression classes (LM, GLM, and GAM) revealed that GAMLSS outperformed them, as 

evidenced by superior results indicated by the AIC criteria method and residuals plot. Moreover, 

GAMLSS facilitates model comparison and the detection of data misspecification, thereby 

enhancing our understanding of which model best fits the data. 

 

The study identified several factors associated with blood pressure among Namibian adults, 

including demographic (age, sex, gender, and residence), physiological (glucose, hemoglobin, 

height, and BMI), socio-economic (education and wealth), and lifestyle factors (alcohol intake). 

Additionally, it was observed that blood pressure tends to increase with age, highlighting the 

importance of age as a contributing factor. 

 



To further explore the spatial dynamics of blood pressure in Namibia, the study recommends 

conducting a comprehensive spatial analysis to investigate potential regional variations in blood 

pressure levels. Such an analysis could provide valuable insights into the geographical determinants 

of blood pressure and inform targeted interventions aimed at addressing disparities across different 

regions of Namibia. 
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