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Abstract 

Globalization coupled with urbanization has placed a significant effect on the food systems of 

developing countries in the world, leading to a myriad lifestyle change that has become one of 

the most important influences in dietary patterns. The nutritional transition has affected the 

dietary pattern and nutrient intake greatly and has led to a rise in the purchases and consumption 

of processed and convenience foods, which are prepared foods designed for simplicity of 

consumption but are associated with rising rates of diet-related non-communicable diseases in 

Low- and middle-income countries (LMICs). This chapter jointly analyzed paired consumption 

of both convenience and non-convenience food that are exhibiting correlations, using a 

household food security survey, conducted in Windhoek. This is illustrated by applying both 

the untruncated and the right-truncated bivariate Poisson models to examine factors that 

influence convenience and non-convenience food consumption patterns both on a weekly and 

monthly basis. The results found that overall, the untruncated (conditional/marginal) model 

fitted the data better. Whereas the consumption of food on a monthly basis was more on the 

non-convenience foods, the purchases of convenience was frequent on a weekly basis and from 

multiple food sources. The choice of food purchase both at weekly and monthly preference was 

influenced by sex, marital status, education level and work status.   

Key words: Convenience and Non-Convenience foods, Bivariate Poisson Regression, 

(Un)Truncated, urbanization. 
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1.1. Introduction 

Globalization has had a significant effect on the food systems of developing countries around 

the world. As a complex and multifaceted phenomenon, globalization is considered by some 

as a form of capitalist expansion which entails the integration of local and national economies 

into a global, unregulated market economy (Shalmali, 2007). Forces manifested by 

globalization, such as market and trade liberalization, capital flow, and urbanization have 

changed the nature of food systems by increasing the diversity and affordability of food, but 

also by changing its quality and nutritional value (Black, 2016).  

In developing countries undergoing rapid urbanization combined with globalization, the 

process includes changes in the sociocultural environment such as mass media marketing and 

the widespread availability of less traditional foods, which play an important role in influencing 

tastes and preferences. Consumer’s food choices or preferences have been attributed to factors 

such as growing foreign direct investments that contributes to the rise of fast-food restaurants 

and western-style supermarkets by offering greater variety, quality, convenience and 

competitive prices in high-value added foods. In urban areas, men and women are driven into 

the workforce in order to maintain their lifestyles. Working hours and commuting times are 

often long and, with growing numbers of family members entering the workforce, there is less 

time available to prepare food and hence there is a greater desire and necessity to consume 

meals outside the home.  

Traditional meals and mealtimes are replaced by spontaneous often unplanned food purchases 

on street corners or in small kiosks that provide family members with at least one and often 

several meals per day. Street foods are becoming increasingly important as both a cheap and 

quick meal option and as an income-generating strategy. Secondary factors such as marketing, 

advertising, the appeal of new products, new retail outlets including supermarkets and 

multinational fast-food chains contribute to dietary adaptation and convergence. Aside from 



the driving force of time constraints, part of the rapid adoption of new foods in the diet stems 

from successful advertising (Lang, 2003). 

Convenience foods are prepared food designed for simplicity of consumption. These foods 

products are prepared food products that can be sold as ready-to-eat dishes; as room-

temperature, precooked and frozen products and hot products. Convenience food can include 

products such as candy, soft drinks, fast food; nuts, fruits, processed meats and cheeses and 

canned products such as soups and pasta dishes (Jackson et al., 2018). Consumption is often 

associated with rising rates of diet-related non-communicable diseases in Low- and Middle-

Income Countries (LMICs) (Khan, 2013). 

Studies of Dietary patterns have become popular in nutritional epidemiology (Smith, Emmett, 

Newby, & Northstone, 2011). Traditional analysis examined diseases in relation to a single or 

a few nutrients or foods. However, people do not eat isolated nutrients. Instead, they eat meals 

consisting of a variety of foods with complex combinations of nutrients. A typical household 

would consume either convenience or consume non-convenience or consume both types of 

food.  The high degree of inter-correlation among nutrients as well as among foods makes it 

difficult to attribute effects to single dietary components.  For these reasons, a more prudent 

analysis that simultaneously estimates factors that are associated with the preference of non-

convenience and convenience food groups is required.  

Event counts such as the number of convenience and non-convenience foods consumed are 

likely to be jointly dependent (Karlis & Ntzoufras , 2005). To understand fully the drivers of 

preference of food choices (Convenience vs. Non-convenience), we will employ 

multidimensional measures that jointly estimate the risk factors and are able to accommodate 

heterogeneity attributes. Different count data may possess different characteristics and 

therefore cannot be used with particular count data models. Poisson regression model provides 



a basis for the analysis of count data. Due to the over-dispersion and/or excess number of zeros 

that are frequently present in empirical count data sets, the Poisson regression model is 

frequently only of limited use. In order to analyze bivariate count data, the plain Poisson 

regression model needs to be extended.  

Bivariate Poisson models are appropriate for modeling paired count data exhibiting correlation 

and require joint estimation (Karlis & Ntzoufras, 2005). The application of bivariate count 

models often assumes a bivariate Poisson distribution which assumes the conditional mean of 

each count variable equals the conditional variance. One more shortcoming of commonly used 

bivariate count models is that they can only accommodate non-negative correlation between 

the paired counts.  

The bivariate Poisson is the most widely used model for bivariate counts. It was proposed by 

(Holgate, 1964) and presented by (Johnson & Kotz, 1969). Leiter & Hamdan (1973) proposed 

bivariate probability models applicable to traffic accidents and fatalities. Several approaches 

have been discussed by various authors with the development of bivariate Poisson distribution 

with various assumptions.  Amongst others, the most comprehensive one has been proposed 

by (Kocherladota & Kocherlakota , 1992). The bivariate Poisson form is further shown using 

a trivariate reduction method (Jung, 1993) allowing for correlation between the variables. 

Karlis & Ntzoufras (2005)   implemented the maximum likelihood estimation for bivariate 

Poisson models and their diagonal inflated variations. Furthermore, (Islam & Chowdhurry, 

2015), (Chowdrhurry & Islam, 2016), (Islam & Chowdhurry, 2017) and (Chowdhury & Islam, 

2019) developed untruncated, zero-truncated and right truncated bivariate Poisson model for 

covariates dependence based on the extended generalized linear model.  Despite vast 

application of bivariate poisson regression models in count data, there is no literature on 

application of bivariate poisson in the area of food consumption. This study thus extends 



bivariate count modelling approach to analyze convenience and non-convenience consumption 

of food preference. 

1.2. Materials and Methods 
 

1.2.1. The AFSUN-HCP Data 

 

This study used the AFSUN-HCP Household Food Security Baseline Survey (2016) which 

collected a wide range of demographic, economic and food consumption, and sourcing data at 

the household level. Households surveyed in the ten constituencies of Windhoek were 

identified using a two-stage sampling design. Primary sampling units (PSUs) were first 

randomly selected from a master frame developed and demarcated for the 2011 Population and 

Housing Census. Within the 10 constituencies, a total of 35 PSUs were selected covering the 

whole of Windhoek, and 25 households were systematically selected in each PSU. The sampled 

PSUs and households were located on maps, which were used to select households for in-

person interviews. Household heads (or their spouses/ partners) were recruited to complete the 

survey. 

1.2.2. Outcome Variables 

We consider two possibly dependent and correlated response variables namely 𝑌1, which is the 

total number of households consuming convenience food (CONVENIENCE) and 𝑌2, which is 

the total number of times each household consumes non-convenience foods (NON-

CONVENIENCE).  

1.2.3. Explanatory Variables 

The regressor variables in this study are: Age of head of household (1- <19, 2- 20-29, 3- 30-

39, 4- 40-49, 5- >50), Sex of head of household (1-Male, 2-Female), Marital Status Sex of head 

of household (1- Unmarried, 2- Married, 3- Living together/cohabitating, 4- Widowed), 

Educational level Sex of head of household (1- None, 2- Primary education, 3- Secondary 



education, 4- Tertiary education) and Work Status Sex of head of household (1- Self-employed, 

2- Formal employed, 3- Unemployed).  

Convenience and non-convenience foods have been categorized based on the source purchased 

and further measured on the number of times a household made use of a source, weekly or 

monthly basis and estimates were made separately for each. Convenience food sources include 

fast foods/take-away, restaurants, spaza/tuckshop, Street seller/trader/hawker and begging 

from the streets while non-convenience food sources comprise supermarkets, small-shops, 

Open markets, and food grown by households in rural areas.  

1.2.4.  Review of Bivariate Count Models Data 

 

1.2.4.1. Bivariate Poisson Regression 

The Bivariate Poisson model is the most used model among the bivariate count models. A well-

established approach, according to (Chou & Steenh, 2011), is to generate the bivariate Poisson 

distribution by convolutions of Poisson random variables (Kocherladota & Kocherlakota , 

1992). Let 𝑌1 represent the convenience food and 𝑌2 be non-convenience food consumed by 

household members over a week and month time period: 

𝑦1𝑖 = 𝑦1𝑖
∗ + 𝜇𝑖              (1) 

𝑦2𝑖 = 𝑦2𝑖
∗ + 𝜇𝑖          (2) 

Where y1i
∗  ~Poisson (𝜆1𝑖) and y2i

∗  ~Poisson (𝜆2𝑖) are independently distributed. The joint 

probability density function of the bivariate Poisson can be defined as follows: 

𝑓(𝑦1𝑖, 𝑦2𝑖|𝑥𝑖) = [∏
𝑒𝑥𝑝(−𝜆𝑗𝑖)𝜆𝑗𝑖

𝑦𝑗𝑖

𝑦𝑗𝑖!

2
𝑗=1 ] 𝑒𝑥𝑝(−𝜆3)∑ (𝑦1𝑖

𝑠
)(𝑦2𝑖

𝑠
)𝑠! (

𝜆3

𝜆1𝑖𝜆2𝑖
)𝑠𝑚

𝑠=0    (3 

 



Where 𝑚 = 𝑚𝑖𝑛(𝑦1𝑖, 𝑦2𝑖) and 𝜆𝑗𝑖 = 𝑒𝑥𝑝(𝑥𝑗𝑖𝛽). The Poisson distribution is known to be 

restrictive due to its equi-dispersion property, viz., with the mean and variance both equal to 

𝜇𝑗. 

  

𝐸(𝑌𝑖𝑡) = 𝑉𝑎𝑟(𝑌𝑖𝑡) = 𝜇𝑖𝑡,𝑡 = 1,2        (4) 

The model allows only for non-negative correlation between the counts and restricts the mean 

to be equal to the variance for each of the respective marginal distributions (Chou & Steenh, 

2011). The marginal distributions of the model are still Poisson, and the correlation between 

the two count variables (conditioned on the covariates) is individual specific, being a function 

of the 𝜆𝑗𝑖 and 𝜆3. 

𝑐𝑜𝑟𝑟(𝑦1, 𝑦2) =  𝜆3/√(𝜆1)(𝜆2)         (5) 

The maximum likelihood estimator of the correlation between 𝑦1 𝑦2 shown by (Leiter & 

Hamdan, 1973) is: 

𝑐𝑜𝑟�̂�(𝑦1, 𝑦2) = (
�̅�2

(�̅�1+�̅�2)
)

1

2
         (6) 

   

 

 

1.2.4.2. Bivariate Truncated Poisson Model  

The bivariate truncated models are mostly used if the observations (𝑦1𝑖, 𝑥1𝑖) or (𝑦2𝑖, 𝑥2𝑖) or 

both in some ranges are totally lost and the joint distribution of observed counts is restricted. 

When the count data are only observed over a portion of the response variable's range, this is 

referred to as truncation (Cameron & Trivedi , 1999). A series may be truncated from below 



(left truncated) or truncated from above (right truncated) or un-truncated (Gurmu & Elder, 

2008). The truncated models can be grouped as follows:  

1.2.4.3. Un- Truncated Bivariate Poisson 

The untruncated model in this study is defined as, the number of occurrences of convenience 

food 𝑌1 over a week or month follows Poisson distribution with parameter 𝜆1 and the 

occurrence of non-convenience food, 𝑌2, is also Poisson with parameter, 𝜆1𝑦1.  The joint pdf 

of 𝑌1 and 𝑌2 is: 

𝑔(𝑦1, 𝑦2) =
𝑒−𝜆1𝜆1

𝑦1𝑒−𝜆𝑦1(𝜆2𝑦1)
𝑦2

𝑦1!𝑦2!
, 𝑦1 = 0,1, … .:𝜆1, 𝜆2 > 0                                               (7) 

1.2.4.4. Zero- Truncated Bivariate Poisson 

The joint distribution of the Zero Truncated Bivariate Poisson model can be obtained from the 

marginal and conditional distributions (Chowdhury & Islam, 2019): 

𝑔(𝑦1, 𝑦2) = 𝑔2(𝑦2|𝑦1). 𝑔1(𝑦1) =
(𝜆2𝑦1)

𝑦2

𝑦2!(𝑒
𝜆2𝑦1−1)

∗ 
𝜆1

𝑦1

𝑦1!(𝑒𝜆1−1)
=

(𝜆2𝑦1)
𝑦2𝜆1

𝑦1

𝑦1!𝑦2!(𝑒𝜆1−1)(𝑒
𝜆2𝑦1−1)

   (8) 

where the link functions are: 

𝑙𝑛 𝜆1 = 𝑋′𝛽1 𝑎𝑛𝑑 𝑙𝑛 𝜆2 =𝑋′𝛽2        (9) 

The log-likelihood function is: 

𝑙𝑛 𝐿 = ∑ [𝑦1𝑖(𝑥𝑖
′𝛽1) − 𝑙𝑛(𝑦1𝑖!) − 𝑙𝑛 (𝑒𝑒

𝑥𝑖
𝛽1

− 1) +𝑦2𝑖(𝑥𝑖
′𝛽2) + 𝑦2𝑖 𝑙𝑛(𝑦1𝑖) −

𝑛
𝑖=1

𝑙𝑛(𝑦2𝑖!) − 𝑙𝑛 (𝑒𝑦1𝑖
𝑒𝑥𝑖

′𝛽2

− 1)]                  

   (10) 

1.2.4.5. Right – Truncated bivariate Poisson. 



Right truncation results from loss of observations greater than some specified values (Cameron 

& Trivedi , 1999). The joint distribution of the right truncated bivariate Poisson distribution 

for number of occurrences of convenience food, 𝑌1, in a week or month interval and number of 

occurrences of non-convenience food, 𝑌2, can be represented by: 

𝑔(𝑦1, 𝑦2) = 𝑔(𝑦2|𝑦1). 𝑔(𝑦1) =  𝑐1𝑐2𝑒
−𝜆1𝜆1

𝑦1𝑒−𝜆2𝑦1(𝜆2𝑦1)
𝑦2/(𝑦1! 𝑦2!)  

 (11) 

 

the bivariate exponential form for the joint distribution of Y1 and Y2 can be shown as: 

𝑔(𝑦1, 𝑦2) = 𝑒{𝑦1 𝑙𝑛 𝜆1+𝑦2 𝑙𝑛 𝜆2−𝜆1−𝜆2𝑦1+𝑦2 𝑙𝑛 𝑦1−𝑙𝑛𝑦1!−𝑙𝑛𝑦2!+𝑙𝑛 𝑐1+𝑙𝑛 𝑐2}   

 (12) 

The loglikelihood function is: 

𝑙𝑛 𝐿 = ∑ {𝑦1𝑖 𝑙𝑛 𝜆1 + 𝑦2𝑖 𝑙𝑛 𝜆2 − 𝜆1 − 𝜆2𝑦1𝑖 + 𝑦2𝑖 𝑙𝑛 𝑦1𝑖! − 𝑙𝑛 𝑦21! + 𝑙𝑛 𝑐1 + 𝑙𝑛 𝑐2𝑦1}
𝑛
𝑖=1   

 (13) 

= ∑ {𝑦1𝑖𝑥1𝑖̀ 𝛽1 + 𝑦2𝑖𝑥2𝑖̀ 𝛽2 − 𝑒𝑥1𝑖̀ 𝛽1 − 𝑒𝑥1𝑖̀ 𝛽2𝑦1𝑖
𝑛
𝑖=1 + 𝑦2𝑖 𝑙𝑛 𝑦1𝑖 − 𝑙𝑛 𝑦1𝑖! − 𝑙𝑛 𝑦2𝑖! + 𝑙𝑛 𝑐1 +

𝑙𝑛 𝑐2𝑦1}            

 (14) 

 

 

 

 

1.2.5. Other Bivariate Regression Models 

1.2.5.1. Bivariate Negative Binomial Regression Model 

Lakshminarayana et al., (1999) defined a bivariate Poisson distribution as a product of Poisson 

marginals with a multiplicative factor and correlation coefficient can be positive, zero, or 



negative depending on the value of 𝜆, the multiplicative factor parameter. Famoye (2010) 

adopted adopted a similar approach as  Lakshminarayana et al., (1999) and defined the bivariate 

negative binomial distribution as a product of negative binomial marginals. The probability 

function of the bivariate negative binomial distribution is given by:  

 

𝑃(𝑦1, 𝑦2) = (𝑚1
−1+𝑦1−1

𝑦1
)𝜃1

𝑦1(1 − 𝜃1)
𝑚1

−1
(𝑚2

−1+𝑦2−1
𝑦2

) 𝜃2
𝑦2(1 − 𝜃2)

𝑚2
−1
× [1 + 𝜆(𝑒−𝑦1 −

𝑐1)(𝑒
−𝑦2 − 𝑐2)],         (15) 

 

Where 𝑐𝑡 = 𝐸(𝑒−𝑌𝑡) = [
1−𝜃𝑡

1−𝜃𝑡𝑒−1
] (𝑡 = 1, 2) and 𝑦1, 𝑦2 = 0,1,2…. Furthermore, the marginal 

distributions of 𝑌𝑡(𝑡 = 1, 2) is defined as a negative binomial with the following mean and 

variance: 

𝜇𝑡 =
𝑚𝑡

−1𝜃𝑡

1−𝜃𝑡
          (16) 

𝜎𝑡
2 = 𝑚𝑡

−1𝜃𝑡/(1 − 𝜃𝑡)
2        (17) 

Additionally, the correlation coefficient can either be positive, zero, or negative depending on 

the value of the multiplicative factor parameter 𝜆, is defined by: 

𝜌 = 𝜆𝑐1𝑐2𝐴1𝐴2/(𝜎1𝜎2)          (18) 

  

1.2.5.2. Bivariate Generalized Poisson Regression Model (BGPR) 

Famoye (2010) defined a BGPR as a product of univariate generalized Poisson marginals 

which allows negative, zero, or positive correlation. 

The probability distribution of the BGPR is given by (Famoye, 2010b):  

𝑃(𝑦1, 𝑦2) = ∏ [
𝜃𝑡
𝑦𝑡(1+𝛼𝑡𝑦𝑡)

𝑦𝑡−1

𝑦𝑡!
𝑒𝑥𝑝[−𝜃𝑡(1 + 𝛼𝑡𝑦𝑡)]] [1 + 𝜆(𝑒−𝑦1 − 𝑐1)

2
𝑡=1 (𝑒−𝑦2 − 𝑐2)]

 (19) 



Whereby 𝑐𝑡 = 𝐸(𝑒−𝑌𝑡) = exp[𝜃𝑡(𝑠𝑡 − 1). Additionally, the marginal distributions of 𝑌𝑡(𝑡 =

1, 2) is defined as a negative binomial with the following mean and variance: 

𝜇𝑡 = 𝜃𝑡/(1 − 𝛼𝑡𝜃𝑡)         

 (20) 

𝜎𝑡
2 = 𝜃𝑡/(1 − 𝛼𝑡𝜃𝑡)

3         

 (21)   

The correlation coefficient can be written as 𝜌 = 𝜎12/(𝜎1𝜎2) = 𝜆(𝑐11 − 𝑐1𝜇1)(𝑐22 − 𝑐2𝜇2)/

(𝜎1𝜎2). The correlation coefficient can either be positive, zero or negative depending on the 

value of the multiplicative factor, 𝜆 (Famoye, 2010b). 

1.2.5.3. Bivariate Poisson Inverse Gaussian (BPIG)    

Suppose 𝑌1, Convenience foods, and 𝑌2, non-Convenience foods, are two random variables that 

are Poisson distributed and independent from each other and has mean 𝜈𝜇1 and 𝜈𝜇2 with 

variance V𝑎𝑟(𝑌1) = 𝜇1 + 𝜇1
2𝜏 and  𝑉𝑎𝑟(𝑌2) = 𝜇2 + 𝜇2

2𝜏. Variable 𝑉 is defined as a random 

variable that has an Inverse Gaussian distribution with the following probability density 

function (Mardalena et al., 2021): 

𝑔(𝜈) = (2𝜋𝜏𝜈3)−0.5𝑒−(𝜈−1)
2/2𝜏𝜈 ,𝜈 > 0      (22) 

Furthermore, the BPIG distribution based on the inverse Gaussian mixture distribution is 

defined by the following joint distribution: 

𝑓(𝑦1, 𝑦2; 𝜇1, 𝜇2, 𝜏) = (
2𝑧

𝜋
)

1

2 𝜇1
𝑦1𝜇2

𝑦2𝑒
1
𝜏𝐾𝑠(𝑧)

(𝑧𝜏)𝑦1+𝑦2 𝑦1!𝑦2!
       (23) 

  

With = 𝑦1 + 𝑦2 −
1

2
 , 𝑧 = √

1

𝜏2
+

2(𝜇1+𝜇2)

𝜏
, and 𝐾

𝑦1+𝑦2−
1

2

(
1

𝜏
√1 + 2𝜏(𝜇1 + 𝜇2)). 

The Bivariate Poisson Inverse Gaussian Regression is defined as a regression model with two 

correlate variables (Mardalena et al., 2021). Suppose 𝑦𝑖𝑗 is the jth response variable for the ith 



observation and given a random sample (𝑌𝑖1, 𝑌𝑖2)~𝐵𝑃𝐼𝐺(𝜇𝑖𝑗, 𝜏) where 𝑖 = 1,2, … . , 𝑛 and 𝑗 =

1,2,then the BPIGR model can be defined as follows:  

𝑙𝑛 [
𝐸(𝑌𝑖𝑗)

𝑞𝑖
] = 𝑋𝑖

𝑇𝛽𝑗         (24) 

Whereby 𝐸(𝑌𝑖𝑗) = 𝜇𝑗 = 𝑞𝑖𝑒
𝑋𝑖
𝑇𝛽𝑗 , 𝑞𝑖 is the exposure variable, 𝑋𝑖

𝑇 =

[1𝑥1𝑖 𝑥2𝑖 …𝑥𝑝𝑖]1×(𝑝+1) is the kth predictor variable vector (𝑘 = 1,2, … . , 𝑝) for the ith 

observation (𝑖 = 1,2, … . 𝑛) and the jth response variable 𝑗 = 1,2,  𝛽𝑗 =

[𝛽𝑗𝑜𝛽𝑗1𝛽𝑗2………𝛽𝑗𝑝] is a regression coefficient vector with (𝑘 + 1) × 1 dimension for 

the jth response variable.  

1.2.5.4. Bivariate Poisson-Laguerre Polynomial Model 

If 𝑔(𝑣1𝑖 , 𝑣2𝑖) is approximated by Laguerre polynomial of order one, we obtain the bivariate 

Poisson- Laguerre polynomial density given by: 

𝑓(𝑦1𝑖,, 𝑦2𝑖|𝑥𝑖) = [∏
(𝜃𝑗𝑖)

𝑦𝑗𝑖

𝑦𝑗𝑖!

2
𝑗=1 ]𝑀(𝑦1,𝑦2)(−𝜃1𝑖, −𝜃2𝑖)    

 (25) 

Where 𝑀(𝑦𝑖,𝑦2)(−𝜃1𝑖, −𝜃2𝑖) = [∏
𝛤(𝑦𝑗𝑖+𝛼𝑗)

𝛤(𝛼𝑗)
2

𝑗=1 𝜆𝑗
𝛼𝑗
(𝜆𝑗 + 𝜃𝑗𝑖)

−(𝑎𝑗+𝑦𝑗𝑖)
]𝛹𝑖  

 (26) 

With 𝜆𝑗 =
1

1+𝜌11
2 [𝛼𝑗 + 𝜌11

2 (𝛼𝑗 + 2)]       

 (27) 

And 𝛹𝑖 =
1

1+𝜌11
2 [1 + 2𝜌11

2
√𝛼1𝛼2(1 − 𝑛1𝑖)(1 − 𝑛2𝑖) + 𝜌11

2 𝛼1𝛼2(1 − 2𝑛1𝑖 + 𝑛1𝑖𝜉1𝑖)(1 −

2𝑛2𝑖 + 𝑛2𝑖𝜉2𝑖)]          

 (28) 



𝑛𝑗𝑖 =
𝑦𝑗𝑖+𝛼𝑗

𝛼𝑗
(1 +

𝜃𝑗𝑖

𝜆𝑗
)
−1

 and 𝜉𝑗𝑖 =
𝑦𝑗𝑖+1+𝛼𝑗

𝛼𝑗
(1 +

𝜃𝑗𝑖

𝜆𝑗
)
−1

    

 (29) 

Unlike the bivariate Poisson-lognormal distribution, the Poisson-Laguerre polynomial model 

has a closed form and can be easily implemented within the likelihood framework (Chou & 

Steenh, 2011).  

1.2.5.5. Bivariate Hurdle and Zero-Inflated Model  

When the observed data shows a high frequency of the zero-zero condition (𝑌1 = 0, 𝑌2 = 0), 

zero-modified count models are applied. There are two approaches to treating this issue. First, 

the bivariate hurdle model, which consists of two parts: a binary outcome model (logit or 

probit) in the first part and a bivariate truncated count model in the second (Mullahy,1986). 

The interpretation that positive observations result from passing the zero-zero hurdle or 

threshold is made possible by this partition. The bivariate hurdle model is appealing because it 

reflects a two-part decision-making process (Chou & Steenh, 2011). The probability density 

function of the bivariate hurdle model is given by: 

ℎ(𝑦1𝑖, 𝑦2𝑖|𝑥𝑖) = {

𝜋𝐼 𝑦1𝑖 = 0, 𝑦2𝑖 = 0

(1 − 𝜋𝑖)

𝜋𝑖
𝑓(𝑦1𝑣𝑦2𝑖 |𝑥𝑖)

1−𝑓(𝑦1𝑖=0,𝑦2𝑖=0)
𝑦1𝑖 > 0,𝑦2𝑖 > 0

   

(30) 

where 𝜋𝑖 = Pr(𝑦1𝑖 = 0, 𝑦2𝑖 = 0)   is defined as the cumulative density function (CDF) of the 

logit or probit regression selection model and 
𝑓(𝑦1𝑣𝑦2𝑖|𝑥𝑖)

1−𝑓(𝑦1𝑖=0,𝑦2𝑖=0)
 is the probability density function 

of a bivariate truncated count regression model.  

Secondly, another approach to model excess zeros in the count data is the bivariate zero-

inflated count models. Bivariate zero-inflated model assumes that the zero counts come from 



two sources not one source as in the bivariate hurdle model (Chou & Steenh, 2011). The zero-

inflated model is used when a count data set shows a large proportion of zeros. A bivariate 

zero-inflated model can be constructed by increasing the probability of the event (𝑌1 = 0, 𝑌2 =

0) and decreasing the other joint probabilities. 

 A logit or probit model is used to determine the probability of counts being the zero-zero state. 

The bivariate zero-inflated probability density function is given by:  

ℎ(𝑦1𝑖, 𝑦2𝑖|𝑥𝑖) = {
𝜋𝑖 + (1 − 𝜋𝑖)𝑓(𝑦1𝑖 = 0, 𝑦2𝑖 = 0)𝑦1𝑖 = 0, 𝑦2𝑖 = 0
(1 − 𝜋𝑖)𝑓(𝑦1𝑖, 𝑦2𝑖|𝑥𝑖)𝑦1𝑖 > 0,𝑦2𝑖 > 0



 (31) 

where 𝜋𝑖 = Pr(𝑦1𝑖 = 0, 𝑦2𝑖 = 0)   is the cumulative density function (CDF) of the logit or 

probit regression, and 𝑓(𝑦1𝑖, 𝑦2𝑖|𝑥𝑖) is the density function. 

1.2.5.6. Bivariate Censored Model  

A sequence is said to be censored from below (left censored) or censored from above (right 

censored). When high counts are not observed, censored samples may result, or they may be 

required by the survey's design. Thus, right censoring is the most common form in the analysis 

of bivariate count models (Chou & Steenh, 2011). Given the bivariate counts are right censored 

at 𝑟 =  (𝑟1, 𝑟2) so that 𝑦𝑗𝑖 = 1, 2, … , 𝑟𝑗𝑓𝑜𝑟𝑗 = 1,2.. Letting 𝑓(𝑦1𝑖, 𝑦2𝑖; 𝜑) denote the 

complete bivariate density (Gurmu and Elder, 2000), the log-likelihood function for the right-

censored bivariate count model is: 

𝐿𝐿(𝑦1𝑦2|𝜑) = ∑ 𝑑𝑖[𝑙𝑛 𝑓(𝑦1𝑖, 𝑦2𝑖; 𝜑)] + [1 − 𝑑𝑖] 𝑙𝑛[1 − ∑ ∑ 𝑓(𝑦1𝑖 = 𝑙, 𝑦2𝑖 =
𝑟2−1
𝑚=0

𝑟1−1
𝑙=0

𝑛
𝑖=1

𝑚; 𝜑)           

 (32) 

where 𝑑𝑖 = 1, if 𝑦 falls in the uncensored region, and 𝑑𝑖 = 0 otherwise. 



1.2.5.7. Diagonal Inflated Bivariate Poisson Model 

One drawback of the bivariate Poisson model is that since its marginal distributions are Poisson 

distributions, which demand that the mean and variance be equal, they cannot handle overly or 

inadequately scattered data (Yunteng, Yao-Jan, Jonathan, & Yinhai, 2011). Karlis & Ntzoufras 

(2005) proposed the diagonal inflated bivariate Poisson model to fix this problem. This model 

uses a more general form developed on the basis of zero-inflated models and the probabilities 

of the diagonal elements are inflated in the probability table. The diagonal inflated bivariate 

Poisson model can be defined based on the bivariate regression model as follows (Yunteng et 

al., 2011). 

𝑓𝐼𝐵𝑃(𝑥, 𝑦) = {
(1 − 𝑝𝑚)𝑓𝐵𝑃(𝑥, 𝑦|𝜆1, 𝜆2, 𝜆3)𝑥 ≠ 𝑦
(1 − 𝑝𝑚)𝑓𝐵𝑃(𝑥, 𝑦|𝜆1, 𝜆2, 𝜆3) + 𝑝𝑚𝑓𝐷(𝑥|𝜃, 𝐽),𝑥 = 𝑦

  

 (33) 

where 𝑝𝑚is the mixing proportion, 𝑝𝑚𝑓𝐷(𝑥|𝜃, 𝐽) is the probability mass function of a discrete 

distribution 𝐷(𝑥; |𝜃). 𝐷(𝑥; |𝜃) can be a Poisson, geometric, or a simple discrete distribution. 

The marginal distributions of a diagonal inflated bivariate Poisson regression model are 

mixtures of distributions with one Poisson component. 

 

1.2.6. Comparison of the Models of Goodness-of-Fit 

 

The goodness of fit of a statistical model describes how well it fits into a set of observations. 

The two commonly used goodness-of-fit statistics for model selection are Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) calculated as:  

𝐴𝐼𝐶 = −2𝐿 + 2𝑞         

 (34) 



𝐵𝐼𝐶 +−2𝐿 + 𝑞𝑙𝑛(𝑁)                           

 (35) 

When comparing models as to fit, lower values of either the AIC or BIC indicate a better fit. 

The AIC were mainly used to conclude because they have an advantage that they can be used 

to descriptively compare all models regardless of whether one is nested or not within another.  

1.2.7. Statistical Analysis 

 

Descriptive statistics were generated to summarize the levels of convenience and non- 

convenience food consumption by household members. In this study, we fitted a bivariate 

Poisson regression model using both the joint and conditional arguments. The Bivariate 

Poisson model is recommended for modelling paired count data exhibiting correlation. 

Estimations and tests for over and under-dispersion for both the right truncated and the 

Untruncated Bivariate Poisson regression to relate convenience and non-convenience food 

consumption with bio-demographic and socio-economic variables were performed. R package 

for bivariate Poisson GLM with covariates “bpglm” was used to fit the models (Chowdhury & 

Islam, 2019). 

 

 

1.3. Results 
 

1.3.1. Frequency Distribution of Consumption of Convenience and Non-

convenience Food 

 

Table 15 shows frequencies of household’s consumption of convenience and non-convenience 

foods. Households purchased convenience foods on a weekly basis were more from street 

sellers/traders/hawkers (46.1%) and Spaza/Tuck-shops (33.7%), while 13.3 percent were 



obtained food from fast foods/Takeaways and 6.2 percent from restaurants. However, monthly 

purchases were fewer and increased for non-convenient food purchases with 80.1 percent of 

the food purchased on a monthly basis at Supermarkets. 

Table 1: Convenience and Non-Convenience Food Sources 

Source Frequency 

Weekly Monthly 

Convenience Food Sources 

Fast foods/Take away 60 (13.3%) 64 (56.6%) 

Restaurants 28 (6.2%) 18 (15.9%) 

Spaza/Tuckshop 152 (33.7%) 12 (10.6%) 

Street seller/trader/hawker 208 (46.1%) 17 (15.0%) 

Begging 3 (0.7%) 2 (1.8%) 

Non-Convenience Food Sources 

Supermarket 174 (30.9%) 544 (80.1%) 

Small Shops 115 (20.4%) 36 (5.3%) 

Open Markets 272 (48.3%) 83 (12.2%) 

Food grown by households in rural areas 2 (0.4%)  16 (2.4%) 

 

Table 16 shows the cumulative total number of purchases from each source constituting 

convenience and non-convenience food.  At least 90.7% of individuals did not shop from any 

source in a week and 7.5 % utilized only one source within the convenience food sources.  

Non-Convenience food sources mostly provide food to be cooked at home.  

 

 

Table 2: Convenience food sources 

Convenience 

Food Sources  
Weekly Monthly 

Count Frequency (%) Count Frequency (%) 
0 = fast food/take away 3557 (90.7%) 0 3507 (89.4%) 

1 = Restaurants 295 (7.5%) 1 297 (7.6%) 

2 = Spaza/Tuck-shops 58 (1.5%) 2 94 (2.4%) 

3 = Street seller/trader/hawker 8 (0.2%) 3 17 (0.4%) 

4 = Begging 4 (0.1%) 4 7 (0.2%) 

Mean 0.115 Mean 0.395 

Std. dev 0.312 Std. dev 0.714 

 

Furthermore, Table 17 shows that at least 7.3 percent visited at least one food source and 3.2 

percent visited at least 2 sources on a weekly basis. Additionally, Table 17 shows that 8.9 



percent visited at least one source monthly and 7.5 percent 2 sources. Overall, on the non-

convenience food sources, households preferred to shop monthly than weekly. 

 

Table 3: Non-convenience food sources 

Non-convenience Food 

Sources 

Weekly Monthly 

Count Frequency (%) Count Frequency (%) 
0 = Supermarket 3500 (89.2%) 0 3182 (81.1%) 

1 = Small shops 288 (7.3%) 1 350 (8.9%) 

2 = Open markets 127 (3.2%) 2 296 (7.5%) 

3 = Food grown by 

households in rural areas 

7 (0.2%) 3 94 (4.4%) 

Mean 0.14 Mean 0.31 

Std. dev 0.445 Std. dev 0.714 

 

1.3.2.  Bivariate Distribution of Outcome Variables 

Table 18 shows the relationship between Convenience food consumed weekly and non-

convenience food consumed weekly as well as monthly consumption in a contingency format. 

The p-values indicate significant associations. About half of the households purchase non-

convenience food at least from one (1) or two (2) non-convenience shops on a weekly basis. 

The same pattern is noted with the monthly purchasing whereby above half of the purchases 

were made from one (1) non-convenience source. There is also an observable upward trend on 

purchasing, food from Convenience food sources. Households tend to purchase convenience 

food from multiple sources (more than 2) on a weekly and monthly basis (Table 18). 

 

Table 4: Crosstabulation of Convenience and Non-convenience Food Sources 

Convenience ~Weekly Non-Convenience ~ Weekly  P-Value 

0=Super-

market 

1=Small shops 2= Open 

markets 

3= Food 

grown by 

households in 

rural areas 

Total  

0 = Fast foods/Take away 3386  146  27 0 3559 <0.001 

1 = Restaurants 90  119   84 1 294 

2 = Spaza/Tuck-shops 21  22  12 2 57 

3= Street 

seller/trader/hawker 

3  1  2  2 8 

4 = Begging 0  1  2  1 4 

Total 3500 289 127 6 3922  



 

 

1.3.3.  Application of Bivariate Poisson Models on the Convenience and Non-

Convenience Food Sources 

 

1.3.3.1. Comparative Fit of Bivariate Poisson Models 

Various Bivariate Poisson regression models were jointly fitted on Convenience and Non-

Convenience data. AIC and BIC values are presented in Table 19 were used to select the best 

model.  Firstly, the Bivariate Poisson model was fit with constant only for both the untruncated 

and the right truncated models. Secondly, the Bivariate Poisson model was fit with covariates 

for both models. The AIC of 3646.976 Untruncated Bivariate Poisson (Full model) on a weekly 

basis was the least among all the fitted models and thus the full model fits the data better. 

Table 5: Summary of the Fitted Bivariate Poisson Regression Models 

Frequency Model 2x Log 

Likelihood 

Akaike 

Information 

Criterion 

(AIC) 

Bayesian 

Information 

Criterion (BIC) 

Weekly Untruncated Bivariate Poisson 

(Constant only) 

-1960.897 3925.795 3938.343 

Untruncated Bivariate Poisson 

(Full model)  

-1787.488 3646.976 3870.246 

Monthly Untruncated Bivariate Poisson 

(Constant only) 

-2222.053 4448.106 4460.655 

Untruncated Bivariate Poisson 

(Full model)  

-2011.454 4094.909 4318.178 

 

1.3.3.2.  Weekly utilization of food sources: Untruncated Bivariate Poisson Regression 

Convenience~ 

Monthly 
  

Non-Convenience ~ Monthly   P-Value 

0=Super-

market 

1=Small shops 2= Open 

markets 

3= Food 

grown by 

households in 

rural areas 

Total  

0 = Fast foods/Take away 3175 217 112 7  3511 <0.001 

1 = Restaurants 6  100 123 65 294 

2 = Spaza/ Tuck-shops 1  30 52  10 93 

3= Street 

seller/trader/hawker 
0  3 6  8  17 

4= Begging 0  0 3 4  7 

Total 3182 350 296 94 3922  



Firstly, the Bivariate Poisson model was fit with constant only as depicted in Table 20. The 

output shows the detail model statistics (AIC, BIC, etc.,) and parameter estimates 

(coefficients, t-value, p-value, adjusted S.E, and adjusted p-values). The AIC of 3925.8 in the 

reduced model is greater than the AIC of 3908. 5 in the Full model, thus the full model fits 

the data better. 

Table 6: Fit for Bivariate Poisson Model (marginal/conditional): Constant only (reduced model) 

Variable name Coeff. S.E t.value p.value Adj.S.E Adj. p.value 

Y1: Constant -2.170 0.047 -45.921 <0.001 0.054 <0.001 

Y2: Constant 0.225 0.042 5.328 <0.001 0.0494 <0.001 

Note. Loglik. = −1960.897, AIC = 3925.795, AICC = 3925.8, BIC = 3938.343, Deviance = 3087.749, 

P-1=1.35, P-2=1.37 

The results of the fit of bivariate Poisson model are shown in Table 21 and 22 for both 

unadjusted and adjusted for over- or under-dispersion. It further provided the detail models 

statistics (e.g., AIC, BIC, etc) and parameter estimates showing the coefficients, standard error, 

t-value, p-value adjusted standard error and adjusted p-values. Here we model two possibly 

correlated dependent variables: (1) Convenience foods (2) non-Convenience foods. The 

Bivariate Poisson regression models shows that the variables education (secondary), age (all 

categories) and Income (20,000-49,999) are important determinants of both convenience and 

non-convenience food groups. The positive coefficients of education (none, primary), work 

(self-employed), sex (male), marital status (living together) shows a higher association on the 

convenience food sources. 

Table 7: Fit of Bivariate Poisson Model (marginal/conditional) for both unadjusted and adjusted, for 

over- or under-dispersion (Full model) 

Variable Names Coefficients 

(Coeff) 

Standard 

Error 

(s.e) 

t.value p.value Adj.s.e Adj.p.value 

Convenience: Constant -2.218 0.617 -3.596 0.000 0.719 0.002 

Education: None 0.064 0.239 0.269 0.788 0.278 0.818 



Education: Primary 0.014 0.219 0.066 0.948 0.255 0.955 

Education: Secondary -0.355 0.207 -1.714 0.087 0.241 0.141 

Education: Tertiary (reference) 

Work: Self-employed 0.113 0.220 0.514 0.607 0.257 0.659 

Work: Formal employed -0.071 0.148 -0.478 0.633 0.172 0.682 

Work: Unemployed (reference) 
     

Sex: Male 0.108 0.100 1.078 0.281 0.117 0.355 

Sex: female (reference) 
      

Marital: Unmarried -0.102 0.604 -0.169 0.866 0.703 0.885 

Marital: Married -0.134 0.609 -0.219 0.826 0.710 0.851 

Marital: Living together 0.674 0.605 1.114 0.265 0.705 0.339 

Marital: Widowed (reference) 

Age: <19 0.134 0.223 0.601 0.548 0.260 0.606 

Age: 20-29 0.336 0.221 1.522 0.128 0.258 0.192 

Age: 30-39 0.067 0.232 0.290 0.772 0.270 0.804 

Age: 40-49 -0.042 0.238 -0.176 0.860 0.278 0.880 

>50 (reference) 

Income: 2500-4999 -0.007 0.272 -0.025 0.980 0.317 0.983 

Income: 5000-9999 -0.421 0.395 -1.066 0.286 0.461 0.360 

Income: 10000-19999 -0.250 0.525 -0.477 0.634 0.611 0.683 

Income: 20000-49999 -0.771 1.016 -0.759 0.448 1.184 0.515 

Income: 0-2499 (reference) 

Table 8: Fit for Bivariate Poisson Model (marginal/conditional) for both unadjusted and adjusted, for 

over- or under-dispersion (Full model)…… Cont. 

Variable Names Coeff. s.e t.value p.value Adj.s.e Adj.p.value 

Non-convenience: 

Constant 

-1.387 1.022 -1.358 0.175 1.205 0.250 

Education: None 0.276 0.235 1.173 0.241 0.277 0.320 

Education_ Primary 0.215 0.219 0.981 0.327 0.258 0.406 

Education_ Secondary 0.422 0.211 2.002 0.045 0.249 0.090 

Education_ Tertiary (reference) 

Work: Self-employed 0.227 0.195 1.165 0.244 0.230 0.324 

Work: Formal 

employed 

-0.087 0.137 -0.636 0.525 0.161 0.590 

Work: Unemployed (reference) 

Sex: Male 0.162 0.096 1.691 0.091 0.113 0.152 

Sex: female (reference) 

Marital: Unmarried 0.408 1.037 0.393 0.694 1.224 0.739 

Marital: Married 0.843 1.027 0.821 0.412 1.212 0.487 

Marital: Living 

together 

0.343 1.037 0.330 0.741 1.223 0.779 

Marital: Widowed (reference) 

Age: <19 0.854 0.280 3.051 0.002 0.330 0.010 

Age: 20-29 0.781 0.272 2.869 0.004 0.321 0.015 

Age: 30-39 0.926 0.263 3.523 0.000 0.310 0.003 

Age: 40-49 0.662 0.258 2.561 0.010 0.305 0.030 

>50 (reference) 



Income: 2500-4999 0.005 0.239 0.019 0.985 0.282 0.987 

Income: 5000-9999 0.214 0.330 0.647 0.517 0.389 0.583 

Income: 10000-19999 0.637 0.372 1.709 0.087 0.439 0.147 

Income: 20000-49999 1.568 0.658 2.383 0.017 0.776 0.043 

Income: 0-2499 (reference) 

Note. Loglik. = −1787.488, AIC = 3646.976, AICC = 3648.446, BIC = 3870.246, Deviance = 2805.341, 

P-1=1.36, P-2=1.39 

 

1.4. Discussion 

Several models exist for different Count data types. It is critical to know the properties and 

assumptions of different models. Bivariate Poisson model are appropriate for modelling paired 

count data exhibiting correlation (Karlis & Ntzoufras, 2005) . In this study, we used the dataset 

of Windhoek AFSUN 2016 Household dataset to relate the Convenience and Non-

Convenience Food Consumption both on a weekly and monthly base.   

Convenience food often implies a lack of effort or concern, whether by choice or necessity. 

Highly processed food production and consumption are steadily increasing in both high-

income and lower-income countries (Pan American Health Organization (PAHO), 2015). 

Parallel to this, the prevalence of obesity and other diet-related chronic non-communicable 

diseases (NCDs), such as type II diabetes, hypertension, and some common cancers, is 

increasing worldwide (Lim, et al., 2012). This study found that the households consume 

convenient food more often on a weekly basis and tend to utilize multiple convenient sources. 

On the other hand, the study revealed that households did not visit non-convenient food sources 

as often on a weekly basis and rather purchased their convenient foods monthly. According to 

Martinez Steel, Popkin, Swinburn, & Monteiro, (2017), the poor nutritional quality of ultra-

processed foods coupled with their high availability, low cost, and aggressive marketing, which 

result in excessive consumption, can lead to obesity and other chronic diet related NCDs. 



This chapter employed both the Untruncated and the Right-Truncated Bivariate models. The 

Bivariate Poisson models were further expanded to allow for covariates, for both the Univariate 

Poisson Regression with constants only and the Untruncated Poisson Regression full model. 

The parameter estimates confirmed that the variables age, marital status and educational level 

had an effect on the convenience food consumption. Hwang & Choe (2016) explained that 

households headed by younger, more educated, and time constrained managers were more 

likely to buy prepared meals. Employment creates time constraints from both the time spent 

working and the time spent commuting. These time constraints shift consumer demand from 

grocery store foods to restaurant meals. The shift to full-service restaurants is most notable 

when all adults in the household are employed (Rahkovsky, Jo, & Carlson, 2018). The model 

statistics, particularly the AICs were used to compare and select the best fitted model. The 

Untruncated models specifically the full model proved to fit the data best compared to the right 

truncated model.  

1.5. Conclusions 

There has been tremendous growth and demand of the convenience food industry recently. 

Traditional meals and meals prepared at home are replaced by, often, unplanned food purchases 

from street corners, take-aways or restaurants. Convenience foods are described to be cheap 

and easy to prepare but the health benefits are questionable. The aim of this study was to apply 

bivariate count modelling approaches in analysing convenience and non-convenience 

consumption of food preference in Windhoek households. This study used the frequency of 

purchasing food from Convenience food Sources and Non-Convenience food sources variables 

from the AFSUN Windhoek dataset, 2016. In order to model frequency of occurrence/ count 

data that are correlated and needs to be jointly estimated, this study employed bivariate Poisson 

regression models, both un-truncated and right truncated. Although the consumption of food 

on a monthly basis was more on the non-convenience foods, the purchases of Convenience was 



frequent on a weekly basis and in multiple food sources. Convenience foods are mostly highly 

processed and of poor nutritional quality and can lead to a higher prevalence of NCDs. The 

untruncated models fit the data best. In conclusion, the model proved that the variables age, 

marital status, educational level of head of household and work status influenced the choices 

of food a household makes.  
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