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Abstract 

Non-Communicable diseases are commonly associated with the dietary patterns of an 

individual. quantifying the disease’s burden over a household’s or individual’s health has been 

a topic of great interest to researchers as well as policymakers.  Various measurement 

approaches of NCD’s that account for different types of biasness is required to correctly 

identify explanatory variables. This chapter used Namibia Household and Income Expenditure 

(NHIES) survey of 2015/16 variables to examine relationships between NCDs and the type of 

foods consumed. Principal Component Analysis was used as a data reduction method to derive 

dietary patterns. Furthermore, this chapter applied a Multiple-Indicator, Multiple-Cause 

(MIMIC) model in which NCD’s is dealt with as an unobserved construct or latent variable to 

be determined by its causes and indicators and to be estimated in a system of structural 

equations. SEM was used to assess the association between the prevalence of NCD’s and food 

types consumed.  Fruits, foods such as condiments/tea/coffee and potatoes, yams, cassava, or 

any foods made from roots and tubers accounted for majority of the variation. The SEM showed 

that food types such as local grains, meat and food made from oil or were found to be significant 

at 5% level.  

Keywords: Structural Equation Models (SEM), Principal Component Analysis (PCA), Non-

Communicable Diseases (NCD) 
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1.1. Introduction 

Non-communicable diseases (NCDs) kill about 41 million people each year, equivalent to 71% 

of all deaths globally. Each year, more than 15 million people die from a non-communicable 

disease between the ages of 30 and 69 years; 85% of these "premature" deaths occur in low- 

and middle-income countries (WHO, 2021). Non-communicable diseases, sometimes referred 

to chronic diseases, tend to be of long duration and are the result of a combination of genetic, 

physiological, environmental and behavioural factors. The main types of NCD are 

cardiovascular diseases (such as heart attacks and stroke), cancers, chronic respiratory diseases 

(such as chronic obstructive pulmonary disease and asthma) and diabetes (WHO, 2021).  

The prevalence of multimorbidity is increasing worldwide. A systematic review in WHO 

Eastern Mediterranean countries in 2013 showed that the high mortality of NCDs is partially 

related to their multimorbidity. More than half of the adults with NCDs have multimorbidity 

or multiple concurrent morbid conditions, and not one single chronic disease (Khorrami, et al., 

2020). The NCD’s are mostly driven by forces that include rapid unplanned urbanization, 

globalization of unhealthy lifestyles and population ageing. Increased prevalence of obesity, 

increased consumption of poor-quality diets, and pervasive undernutrition are contributing to 

this epidemic (UNSCN, 2018).  

Poor quality diets are found to be among the top 6 risk factors contributing to the global burden 

of disease (Global Pattern, 2016). According to Global Pattern (2016), the NCD burden is 

specifically associated with diets that are low in fruits and vegetables, high in sodium, low in 

nuts and seeds, low in whole grains, and low in seafood-derived omega-3 fatty acids. The type 

of dietary pattern followed can easily influence one’s health and the risk of contracting a 

chronic illness.  Three (3) categories of dietary pattern analysis approaches exist, namely the 

theoretical methods, empirical methods and the hybrid methods. 



During the past few decades, quantifying the disease’s burden over the population’s health has 

been a topic of great interest to researchers as well as policymakers. A great deal of research 

has been conducted in the developed world to quantify the disease burden (communicable and 

non-communicable) on the population’s health (El-Saadani, Saleh, & Ibrahim, 2021). One type 

of approach is based on Multiple-Indicator, Multiple-Cause (MIMIC) models in which NCD’s 

is dealt with as an unobserved construct or latent variable to be determined by its causes and 

indicators and to be estimated in a system of structural equations. Measurement of Multiple-

Indicator, Multiple-Causes variables such as prevalence of Non-Communicable Diseases or 

number of food groups consumed in a household can be a challenge to compute. In most 

instances, traditional analysis using a multivariate normal approximation for such type of 

variables can be misleading due to the nature of the data (small marginal means with a lot of 

zero counts) (Karlis & Meligkotsidou, 2007). Structural Equation Models combines both 

measurement and structural considerations. They integrate psychometric concepts (i.e., 

measurement approaches) and econometric ideas (structure approaches). Thus, this method has 

the ability to take into account measurement errors. As for the structure approaches in SEM, 

path analysis is applied to estimate the relationships among latent constructs. The ability to 

combine these two analyses is one of the advantages of SEM. By specifying and describing the 

plausible relationships between latent concepts and manifest variables, associated 

measurement errors, and proposed structural relationships among latent structures in SEM can 

effectively estimate parameters simultaneously, which mirror the fact that the variables coexist 

in reality. 

Theoretical methods are also known as a priori methods and are used to assess diets based on 

prior knowledge and scientific evidence such as the dietary guideline index (Castro, Baltar, & 

Marchioni, 2016). Dietary indices are the most common hypothesis-oriented approaches that 

evaluate the adherence of population intake to nutritional recommendations. The common 



dietary indices include the Healthy Eating Index (HEI) that was developed to investigate 

American eating habits and their compliance with the dietary guidelines as provided by the 

Recommended Dietary Allowance (RDA) (de Calvalho, Dutra, Pizato, Gruezo, & Ito, 2014); 

the Original Diet Quality index that was developed to assess the intake of eight food groups 

and the recommendations of the committee on diet and health (Patterson et al., 1994); the 

Mediterranean diet score that is characterized by high intake of olive oil, non-starchy 

vegetables, legumes, whole grains, fruits and the low intake of whole milk and dairy products 

and red meats; and low to moderate intake of wine as the main source of alcohol during the 

meals (de Calvalho, Dutra, Pizato, Gruezo, & Ito, 2014); the Overall Nutritional Quality Index 

for assessing the overall nutritional quality of foods, and the Dietary Approaches to Stop 

Hypertension (DASH) which is a lifelong approach to healthy eating that is designed to help 

treat or prevent high blood pressure.  

Empirical methods, sometimes referred to as a posteriori, uses statistical approaches to deduce 

information about existing dietary patterns within the population (Thorpe, Milte, Crawford, & 

McNaughton, 2016). Exploratory factor analysis is used to analyse interrelationships among a 

large number of variables and to explain these variables in terms of smaller number of common 

underlying dimensions. It involves finding a way of shrinking the information contained in 

some of the original variables into a smaller set of implicit variables with a minimal loss of 

information (Zaiontz, 2018). Principal Component Analysis (PCA) and Cluster Analysis (CA) 

are the other commonly used empirical methods for dietary patterns.  PCA uses the correlation 

matrix of food intake variables to identify common patterns of food consumption within the 

data to account for the largest amount of variation in diet (Thorpe, Milte, Crawford, & 

McNaughton, 2016). Both PCA and factor analysis are most suitable when confronted with a 

large number of correlated variables, and the desire is to reduce them into a small set of non-

correlated variables that contains the same information of the larger one. Other reduction 



methods include the Cluster analysis, the Least Absolute Shrinkage and Selection Operator 

(LASSO), Reduced Rank Regression (RRR), and the partial least-squares regression. 

This chapter thus aims to apply structural equation models to multiple-indicator, multiple 

causes dataset. The model is used to find the relationship between non-communicable diseases 

(NCD’s) and the type of diets consumed in Namibia. Additionally, the chapter explored other 

data reduction method, PCA, to explain the type of foods consumed.  

1.2. Materials and Methods 
 

1.2.1. The NHIES 2015/16 

 

The study used cross-sectional survey data of the Namibian Household and Income 

Expenditure (NHIES) of 2015/2016. The primary sampling frame that was used for this survey 

is a list of Primary sampling Units (PSUs) based on the 2011 Population and Housing Census 

Enumeration Areas (EAs). A secondary sampling frame for each of the selected PSUs was 

created for the purpose of selecting the sample households through a listing procedure. The 

sample design for the survey was a stratified two-stage cluster sample, where the first stage 

units were geographical areas designated as the Primary Sampling Units (PSUs) and the second 

stage units were the households. The up-to-date list of households in the selected PSU were 

prepared during the listing stage of fieldwork, and 12 households were systematically selected 

in each PSUs. 

For this analysis, five (5) non-Communicable diseases; Diabetes (0.8%), High Blood Pressure 

(6.7%), Cancer (0.2%), Cardiac/Heart diseases (0.8%) and respiratory diseases (including 

asthma) (1.5%) were selected for analysis due to their high prevalence. Structural Equation 

Models (SEM) were used to model for NCD’s, and the type of foods consumed. The food 

groups in the NHIES 2015/2016 were re-grouped and re-arranged in order to make up the 12 

food groups. Principal Component analysis was used to reduce the 12 food groups to a few 



principal components. SPSS & statistical R Version 3.6 was used to compute PCA and SEM, 

respectively. 

1.2.2. Statistical Methods 

 

1.2.2.1. Principal Component Analysis (PCA) 

Two extensively used empirical methods for food pattern analysis are principal component 

analysis (PCA) and cluster analysis (CA) (Thorpe, Milte, Crawford, & McNaughton, 2016). In 

order to find common patterns of food consumption within the data and account for the most 

variation in diet, PCA uses the correlation matrix of food intake variables (Thorpe, Milte, 

Crawford, & McNaughton, 2016). PCA and factor analysis are mostly used when there are a 

large number of potential variables to analyze and there is a need to summarize the information 

contained in those variables as efficiently as possible (Gleason, Boushey, Harris, & Zoellner, 

2015). The following definition for PCA is derived from (Zaiontz, 2018) 

Let 𝑋 = [𝑥𝑖]  be any 𝑘 ×  1 random vector. We now define a 𝑘 ×  1 vector 𝑌 = [𝑦𝑖], where 

for each 𝑖 the 𝑖𝑡ℎ principal component of 𝑋 is 

  𝑦𝑖  = ∑ 𝛽𝑖𝑗𝑥𝑗
𝑘
𝑗=1         (1) 

for some regression coefficients 𝛽𝑖𝑗. Since each 𝑦𝑖  is a linear combination of the 𝑥𝑗, 𝑌 is a 

random vector. 

Let ∑ = [𝜎𝑖𝑗]  be the 𝑘 × 𝑘 population covariance matrix for 𝑋. Since the column vectors βj are 

orthonormal, 𝛽𝑖. 𝛽𝑗 = 𝛽𝑖
𝑇𝛽𝑗 = 0 if 𝑗 ≠ 𝑖 and 𝛽𝑖

𝑇𝛽𝑗 = 1 if  𝑗 = 𝑖. Then the covariance matrix for 

𝑌 is given by: 

 

𝑣𝑎𝑟(𝑦𝑖) = ∑ ∑ 𝛽𝑖𝑝
 

𝛽𝑖𝑚𝜎𝑝𝑚 = 𝑘
𝑚=1

𝑘
𝑝=1 𝛽𝑖

𝑇(∑ 𝜆𝑗𝛽𝑗
𝑘
𝑗=1 𝛽𝑗

𝑇)𝛽𝑖 = ∑ 𝜆𝑗
𝑘
𝑗=1 (𝛽𝑖

𝑇𝛽𝑗)(𝛽𝑗
𝑇𝛽𝑖) =  𝜆𝑖      

(2) 
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𝑐𝑜𝑣(𝑦𝑖, 𝑦𝑗) = ∑ ∑ 𝛽𝑖𝑝
 

𝛽𝑗𝑚𝜎𝑝𝑚 = 𝑘
𝑚=1

𝑘
𝑝=1 𝛽𝑖

𝑇(∑ 𝜆𝑟𝛽𝑟
𝑘
𝑟=1 𝛽𝑟

𝑇)𝛽𝑗 = ∑ 𝜆𝑟
𝑘
𝑟=1 (𝛽𝑖

𝑇𝛽𝑟)(𝛽𝑟
𝑇𝛽𝑗) = 0 

            

 (3) 

It is also worth noting that the first principal component is the combination that accounts for 

the largest variance in the sample. The second component accounts for the next largest amount 

of variance and is uncorrelated with the first. Successive components thus explain 

progressively smaller portions of the sample variance and are uncorrelated with each other 

(Suresh., 2014). 

Since one can calculate as many principal components as there are variables, the researcher 

does not gain any additional insight if all the variables are replaced by their principal 

components. Thus, one needs to determine how many factors are needed to represent the data, 

i.e., to reproduce the original correlations. There are two main criteria for deciding how many 

factors to extract. One by examining Eigenvalues whereby a criterion of eigenvalue greater 

than 1 suggests that only factors that account for variances greater than 1 should be included. 

Factors with a variance of less than 1 are not better than individual variables, since each 

variable has a variance of 1. Additionally, they can be studied using a scree plot, which plots 

the eigenvalues versus the number of variables in the order of extraction. The curve's point 

where the slope changes to a horizontal angle determines how many factors can be derived. 

The maximum number of components that can be extracted is indicated at this stage (Suresh ., 

2014). 

The other recommended method is the Varimax Orthogonal Rotation. The VARIMAX method 

of rotation is the most frequently used rotation method (Hair et al., 1998, as cited in (Suresh., 

2014)). It minimizes the number of variables that have high loadings on a factor, so that the 

factors can be interpreted more easily. The relationship between the test points remains the 

same as before. However, the axes are altered to interpret the factors more easily (Suresh., 

2014). 



1.2.2.2. Structural Equation Model (SEM) 

Structural Equation Modelling abbreviated as SEM, is a very general statistical modelling 

technique, which is widely used in the behavioural sciences (Hox, Moerbeek, & Van De 

Schoot, 2017). It can be viewed as a combination of factor analysis and regression or path 

analysis. The interest in SEM is often on theoretical constructs, which are represented by the 

latent factors. The relationship between the theoretical constructs is represented by regression 

or path coefficients between the factors. The structural equation model implies a structure for 

the covariances between the observed variables, which provides the alternative name 

covariance structure modelling. It should be noted that the model can be extended to include 

means of observed variables or factors in the model, which makes covariance structure 

modelling a less accurate name (Hox et al., 2017).  

Bardenheier, et al., (2013) used structural equation modeling with factor analysis, which groups 

inter-correlated variables into a single factor or latent construct, and path analysis, which 

includes the direct and indirect effects of factors previously reported associated with 

prediabetes. Direct effects are depicted as an arrow emanating from an independent variable 

(exposure) leading and pointing to a dependent variable (outcome). An indirect effect is 

depicted as a mediating variable having an arrow pointing to it from an independent variable 

but also pointing to yet another dependent variable. A confounder is depicted as a variable with 

direct effects on both the exposure and the dependent variable. Correlations between the 

measurement errors of two variables are represented by two-headed curving arrows, in which 

case only the measurement error terms are correlated. 

Latent variable models typically have several indicators for each latent construct, the capacity 

to test models with multiple dependent variables, and the advantage of testing multiple 

integrated models simultaneously rather than factors one at a time. Additionally, structural 



equation modeling studies the direct and indirect impacts of mediators on dependent variables 

as well as complex associations between various mediators (Bardenheier, et al., 2013). Equally, 

in a traditional regression model, mediators would not be included because they would block 

the pathway between the independent variable of interest and the dependent variable. Thus, in 

the structural-equation model, the independent factors and combined mediated relationships 

can be examined simultaneously, determining the impact of each of the dependent variables in 

the appropriate order. Thus, the SEM includes mediating effects without sacrificing indirect 

effects of interest. For each relationship in the SEM model, only data missing for either the 

independent or dependent variable would be missing from that equation (Bardenheier, et al., 

2013). 

The latent variable is divided into two parts namely the latent variable model and the 

measurement model. The latent variable is defined as follows: 

𝜂𝑖 = 𝛼𝜂 + 𝑩𝜂𝑖 + 𝜞𝜉𝑖 + 𝜍𝑖        (4) 

Whereby 𝜂𝑖 is a vector of latent endogenous variables for unit 𝑖, 𝛼𝜂 is a vector of intercept 

terms for equations, 𝑩 is the matrix of coefficients giving the expected effects of the latent 

endogenous variables (𝜂) on each other, 𝜉𝑖 is the vector of latent exogenous variables, 𝚪 is the 

coefficient matrix giving the expected effects of the latent exogenous variables (𝜍) on the latent 

endogenous variables (𝜂), and 𝜍𝑖 is the vector of disturbances. The  𝑖 subscript indexes the ith 

case in the sample. 

The measurement model links the latent to the observed responses (indicators). It has two 

equations as outlined below: 

𝑦𝑖 = 𝛼𝑦 + 𝛬𝑦𝜂𝑖 + 휀𝑖 and         (5) 

𝑥𝑖 = 𝛼𝑥 + 𝛬𝑥𝜉𝑖 + 𝛿𝑖          (6) 

 



Where 𝑦𝑖 and xi  are vectors of the observed indicators of 𝜂𝑖 and 𝜉𝑖, respectively, 𝛼𝑦 and 𝛼x  

are intercept vectors, Λ𝑦 and Λ𝑥 are matrices of factor loadings or regression coefficients giving 

the impact of the latent 𝜂𝑖and 𝜉𝑖 on 𝑦𝑖 and xi, respectively, and 휀𝑖 and δ𝑖 are the unique factors 

of 𝑦𝑖 and xi.  

1.2.2.3. Model Selection 

Chi-square test statistics is the most used when modelling latent variables to measure/quantify 

model fit; however, it is sensitive to large sample size. Methodologists developed numerous fit 

indices to adjust the chi-square test statistics with the information in the model, such as degrees 

of freedom, sample size, and/or the number of variables. Chi-square can be calculated as 

follows: 

𝑋2 = ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

Depending on the elements in the formula, fit indices in latent variable models can be 

categorized into three types (Chang, Gardiner, Houang, & Yu, 2020): 1) relative fit indices, 

Comparative Fit Index and the absolute fit indices). R packages: “lavaan” and “semPlot” were 

used to model the structural equations.  

1.3. Results 
 

1.3.1. Prevalence of Non- Communicable Diseases  

Non-communicable diseases are a concern in Namibia. High Blood pressure was found to be 

highest (6.7%) NCD among the population in Namibia (Table 34). Other NC diseases that most 

people are suffering from diseases include Asthma and epilepsy (1.0%), diabetes and 

cardiac/heart diseases (0.8%) respectively, and cancer (0.2%). 

Table 1: non-communicable diseases in Namibia 

Disease Frequency % 



NCD1: Diabetes 348 0.8 

NCD2: High blood pressure 2785 6.7 

NCD3: Cancer 72 0.2 

NCD4: Cardiac / Heart 336 0.8 

NCD5: Respiratory disease (asthma, etc.) 641 1.5 

NCD6: No Chronic illness 37399 89.9 

Total 41581 100 

 

1.3.2. Types of Food Consumed 

 

Increased prevalence of obesity, increased consumption of poor-quality diets, and pervasive 

undernutrition are contributing to the NCD epidemic. Specifically, the NCD burden is 

associated with diets low in fruits and vegetables, high in sodium, low in nuts and seeds, low 

in whole grains, and low in seafood-derived omega-3 fatty acids (UNSCN, 2018). Table 35 

shows that 23.4% of the food consumed are local foods mostly made from wheat or grain, 

19.6% of the food consumed were from foods made with oil, fat or butter, 18.3% is meat 

products and 17.9% from sugar or honey. High consumption of these foods is associated with 

NCD’s (UNSCN, 2018).  

Table 2: Type of foods consumed.  

Food Type 

 

Yes No 

Frequency % Frequency % 

Any (local food) bread, rice, noodles, biscuits or 

any other foods made from millet, sorghum, 

maize, rice, wheat, or (any other local grain) 9739 23.40% 351 0.80% 

Beef, pork, lamb, goat, rabbit, wild game, 

chicken, duck, other birds, liver, kidney, heart or 

other organ meats 
7663 18.30% 2427 5.80% 

Foods made with oil, fat or butter 8157 19.60% 1933 4.60% 

Sugar/honey 7428 17.90% 2662 6.40% 

 

1.3.3. Association of Type of Foods Consumed and Non-Communicable 

Diseases 

 

1.3.3.1. Local grain foods  

 



At least 6.9% of the households with High Blood pressure have indicated that they consume 

“Any (local food) bread, rice, noodles, biscuits or any other foods made from millet, sorghum, 

maize, rice, wheat, or (any other local grain)”. Other NCD with A high percentage in 

consumption of local foods/grain/wheat was the respiratory diseases (including asthma) 

(1.4%). Additionally, the Pearson’s Chi-square test indicated that there was no association 

between NCDs and the food type (“Any (local food) bread, rice, noodles, biscuits or any other 

foods made from millet, sorghum, maize, rice, wheat, or (any other local grain)”), P-value 

0.780. (Table 36). 

 

 

 

 

 

 

Table 3: Association of NCD and Local Food 

Disease 

Any local 

food/grain/wheat 
Total 

Pearson Chi-Square  

No Yes 

Valu

e 

Asymptotic 

Significance (2-sided) 

Diabetes 0.90% 0.80% 0.80% 3.228 0.78 

High Blood Pressure 6.00% 6.90% 6.90%     

Cancer 0.00% 0.20% 0.20%     

Cardiac or Heart 1.40% 0.90% 0.90%     

Respiratory Disease (Inc. 

Asthma) 2.00% 1.40% 1.50%     

Does not have a Chronic illness 87.70% 87.40% 87.40%     

Total 

100.00

% 

100.00

% 

100.00

%     

 

1.3.3.2. Meat Products  

At least 7.1 percent of individuals with high blood pressure consumed meat/chicken products. 

Meat products included beef, pork, lamb, goat, rabbit, wild game, chicken, duck, other birds, 



liver, kidney, heart or other organ meats. The Pearson’s Chi-square test shows that there is a 

significant relationship between the NCDs and Meat/Chicken products (P-value- 0.0034). 

 

Table 4: Association of NCD and Meat 

Disease 

Meat/Chicken 

Products 
Total 

Pearson Chi-Square  

No Yes Value 

Asymptotic 

Significance (2-sided) 

Diabetes 0.90% 0.70% 0.80% 10.837 
0.034 

  

  

  

  

  

  

High blood pressure 6.20% 7.10% 6.90%   

Cancer 0.10% 0.20% 0.20%   

Cardiac/Heart  0.90% 0.90% 0.90%   

Respiratory disease (asthma, etc.) 1.00% 1.60% 1.50%   

Does not have a Chronic illness 88.70% 87.00% 87.40%   

Total 100.00% 100.00% 100.00%   

 

 

 

1.3.3.3. Foods made with Oil, Fat or Butter 

Table 38 indicates that 6.9%, 1.4%, 0.8%, 0.8% and 0.2% of the households had High Blood 

pressure, Respiratory diseases, Cardiac/ Heart, Diabetes, and cancer respectively (Table 38). 

The Pearson Chi-square was however not significant at 5% and indicated no association 

between the NCDs and foods made with oil, fat or butter. 

Table 5: Association of NCD with Fats/Oils 

Disease Foods made with 

oil, fat or butter 

Total Pearson Chi-Square 

No Yes   Value Asymptotic Sign. (2-sided) 

Diabetes  0.80% 0.80% 0.80% 8.537 0.201 

  

  

  

  

  

  

High blood pressure 6.80% 6.90% 6.90%   

Cancer  0.30% 0.20% 0.20%   

Cardiac/Heart 1.40% 0.80% 0.90%   

Respiratory disease (asthma, etc.) 1.60% 1.40% 1.50%   

Does not have a chronic illness 86.50% 87.70% 87.40%   

Total 100.00% 100.00% 100.00%   

 

1.3.3.4. Sugar/Honey 



Table 39 shows that at least 7.0 percent of the high blood pressure, 1.5% respiratory diseases, 

0.9% Cardiac/Heart, 0.8% Diabetes and 0.2% Cancer individuals consumed sugar or honey 

products. According to the Pearson Chi-Square test, there was no association between NCDs 

and Sugar/Honey (P-value greater than 0.005). 

Table 6: Association of NCD and Sugar/Honey 

Disease Sugar/Honey Total Pearson Chi-Square 

No Yes Value Asymptotic Sign. (2-sided) 

Diabetes 0.60% 0.80% 0.80% 12.273 0.056 

  

  

  

  

  

  

High blood pressure 6.50% 7.00% 6.90%   

Cancer 0.10% 0.20% 0.20%   

Cardiac/Heart 1.00% 0.90% 0.90%   

Respiratory disease (asthma, 

etc.) 

1.30% 1.50% 1.50%   

Does not have a chronic illness 87.30% 87.50% 87.40%   

Total 100.00% 100.00% 100.00%   

 

1.3.4. Principal Component Analysis (PCA) 

 

Principal Component analysis was used to reduce the 12 food groups to a few principal 

components. The PCA extracted three (3) components with eigen values greater than 1, 

explaining 49.4% of the total variance in the data set. The first, second and third components 

explained 29.7%, 10.4% and 9.4% respectively of all variations (Table 40).   

Table 7: PCA components 

Component Initial Eigenvalues Extraction Sums of 

Squared Loadings 

Rotation Sums of 

Squared Loadingsa 

Total % of 

Variance 

Cumulative 

% 

Total % of 

Variance 

Cumulative 

% 

Total 

1 3.560 29.670 29.670 3.560 29.670 29.670 3.085 

2 1.246 10.383 40.053 1.246 10.383 40.053 2.038 

3 1.125 9.374 49.426 1.125 9.374 49.426 1.500 

4 .902 7.516 56.943     

5 .852 7.103 64.046     

6 .750 6.247 70.294     

7 .735 6.126 76.419     

8 .629 5.243 81.662     

9 .581 4.842 86.504     

10 .555 4.624 91.128     

11 .536 4.470 95.598     

12 .528 4.402 100.000     

Extraction Method: Principal Component Analysis. 

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance 



 

Component 1, 2 and 3 accounted for majority of the variances and had eigen values of 3.6, 1.2 

and 1.1 respectively. This implies the PCA explained 49.9% of the food types summarized as 

three (3) underlying dimensions coined from the food types loaded significantly in the 3 

extracted Components. Table 41 indicates that the variables can be grouped into three (3) 

components with three (3) factor loadings each. Food made with oil, fat and butter, and 

vegetables food items overlaps across the components but with their strongest loading of 0.516 

and 0.477 respectively in the 1st component.  

Table 8: Component Matrix of the PCA 

Food Types Component 

1 2 3 

Fruits .682 -.334  

Any foods such as condiments/tea/coffee .672   

Potatoes, yams, cassava, or any foods made from roots and tubers .670   

Eggs .657   

Cheese, yoghurt, milk or other milk products .605  -.322 

Sugar/honey .597 .450  

Beef, pork, lamb, goat, rabbit, wild game, chicken, duck, other birds, 

liver, kidney, heart or other organ meats 

.552   

Foods made with oil, fat or butter .516 .439 .308 

Vegetables .477 -.320 .380 

Food made from beans, peas, lentils or nuts .319 -.448  

Any (local food) bread, rice, noodles, biscuits or any other foods made 

from millet, sorghum, maize, rice, wheat, or (any other local grain) 

 .413  

Fresh or dried fish or shellfish   .733 

Extraction Method: Principal Component Analysis. 

a. 3 components extracted. 

 



Figure 3 shows graphic dimensions to determine the number of components to be extracted. 

The Scree plot suggests taking the first 3 components.

 

Figure 1: Scree Plot of food types 

1.3.5. Structural Equation Modelling (SEM) 

 

Our model is estimated by maximum likelihood (ML). A likelihood ratio statistic comparing 

the fitted model (with 75 parameters) to the unconstrained saturated model produces a p value 

of less than 0.001 with df = 166. The chi square test is significant suggesting good fit. 

Standardized Root Mean Square Residual (SRMR), Comparative Fit Index (CFI), and Tucker-

Lewis Index (TLI) are used to assess model fit. In this study, SRMR = 0.063, CFI= 0.850 and 

TLI= 0.799, which are near the recommended cutoffs of less than 0.08 and more than 0.95, 

indicating that the model is a good-fitting model. Comparative indices, such as AIC and BIC, 

are used to compare competing models, that is, with different co-variance structures. Since 

there is no competitive model in our example, AIC and BIC is not used in this case.  

Table 9: SEM Model Specifications 

Estimator ML 

Optimization method  NLMINB 

Model Test User Model 

Test Statistic 

D.F 

P-Value 

 

6211.565 

168 

<0.001 

Model Test Baseline Model 

Test Statistic 

D.F 

P-Value 

 

40403.294 

225 

<0.001 



User Model versus Baseline Model 

Comparative Fit Index (CFI) 

Tucker-Lewis Index (TLI) 

 

0.850 

0.799 

Log likelihood and Information criterion 

Log likelihood User Model (H0) 

Log likelihood unrestricted model (H1) 

Akaike (AIC) 

Bayesian (BIC) 

Sample-size adjusted Bayesian 

 

-9079.044 

-5973.261 

18308.087 

18849.535 

18611.196 

Root Mean Square Error of Approximation 

RMSEA 

90% CU – Lower 

90% CI- Upper 

P-value RMSEA <=0.05 

 

0.060 

0.058 

0.061 

0.000 

Standardized Root Mean Square Residual  

SRMR 0.063 

Parameter Estimates  

Standard errors Standard 

Information Expected 

Information saturated (h1) model Structured 

 

R packages ‘lavaan” and “semPlot” used to run structural equation modeling in this chapter 

(Table 43, 44, 45, 46), and the latter one is for generating the diagram (Figure 4). The “Std.lv” 

column reported the estimates when the latent variables “FS” (Food Security) and “NCD” 

(Non-Communicable Diseases) were standardized. The last column “Std.all” reported the 

parameter estimates when both the latent variables and the observed variables were 

standardized (also called the ‘completely standardized solution’). The function semPaths is 

used to plot the SEM diagrams (Figure 4). 

Table 10: Parameter Estimates: Latent Variables 

Latent variables. FS=~ Estimate Std. err P value Std. lv Std. all 

 

Food Type 1 1.000   0.038 0.206 

Food Type 2 7.975 0.435 <0.001 0.301 0.629 

Food Type 3 5.303 0.310 <0.001 0.200 0.405 

Food Type 4 7.829 0.427 <0.001 0.295 0.636 

Food Type 5 5.443 0.308 <0.001 0.205 0.481 

Food Type 6 7.179 0.393 <0.001 0.271 0.613 

Food Type 7 2.718 0.203 <0.001 0.103 0.205 

Food Type 8 2.537 0.168 <0.001 0.096 0.265 

Food Type 9 7.263 0.402 <0.001 0.274 0.553 

Food Type 10 4.450 0.257 <0.001 0.168 0.427 

Food Type 11 6.071 0.339 <0.001 0.229 0.520 

Food Type 12 0.154 0.446 <0.001 0.308  



Ncd1=~ncd_1 (Diabetes) 1.000   0.087 1.000 

Ncd2=~ncd_2 (High blood pressure) 1.000   0.253 1.000 

Ncd3=~ncd_3 (Cancer) 1.000   0.044 1.000 

Ncd4=~ncd_4 (Cardiac/Heart) 1.000   0.095 1.000 

Ncd5=~ncd_5 (Respiratory illness) 1.000   0.120 1.000 

Ncd6=~ncd_6 (No NCD) 1.000   0.331 1.000 

 

Table 44 shows regression estimates. Educational level of a household and residence type was 

found to have a statistically significant relationship (p-value less than 0.001) with diabetes 

(NCD1). Other variables that were significant at 5% are residence (Diabetes (NCD1), 

Cardiac/Heart (NCD4) and No NCD (NCD6)). Table 45 show covariances of NCD’s.  

Table 11: Parameter Estimates: Regression 

Variable Estimate Std. err P value Std. lv Std. all 

Ncd1 (Diabetes)~      

Food Security -0.042 0.026 0.100 -0.018 -0.018 

Attain (educational level) 0.005 0.001 <0.001 0.060 0.060 

li_urbrur (residence) -0.000 0.000 0.011 -0.001 -0.026 

q04_20 (Smoking) -0.005 0.003 0.105 -0.056 -0.017 

Q04_22 (Alcohol consumption) 0.002 0.002 0.315 0.025 0.011 

Ncd2 (High Blood Pressure) ~      

Food Security 0.022 0.073 0.760 0.003 0.003 

Attain (educational level) 0.035 0.003 <0.001 0.140 0.139 

li_urbrur (residence) 0.000 0.000 0.167 0.000 0.014 

q04_20 (Smoking) -0.040 0.009 <0.001 -0.157 -0.048 

Q04_22 (Alcohol consumption) 0.007 0.0060 0.260 0.028 0.012 

Ncd3 (Cancer) ~      

Food Security 0.021 0.013 0.109 0.018 0.018 

Attain (educational level) 0.002 0.000 <0.001 0.038 0.038 

li_urbrur (residence) -0.000 0.000 0.796 -0.000 -0.003 

q04_20 (Smoking) -0.003 0.002 0.045 -0.069 -0.021 

Q04_22 (Alcohol consumption) 0.003 0.001 0.045 0.058 0.025 

Ncd4 (Cardiac/heart) ~      

Food Security 0.013 0.028 0.635 0.005 0.005 

Attain (educational level) 0.002 0.001 0.085 0.018 0.017 

li_urbrur (residence) 0.000 0.000 0.003 0.001 0.030 

q04_20 (Smoking) -0.001 0.003 -0.373 -0.013 -0.004 

Q04_22 (Alcohol consumption) -0.000 0.002 -0.083 -0.002 -0.001 

Ncd5 (Respiratory illness) ~      

Food Security 0.044 0.035 0.208 0.014 0.014 

Attain (educational level) 0.002 0.001 0.144 0.015 0.015 

li_urbrur (residence) 0.000 0.000 0.248 0.000 0.012 

q04_20 (Smoking) -0.008 0.004 0.046 -0.069 -0.021 

Q04_22 (Alcohol consumption) 0.004 0.003 0.224 0.030 0.012 

Ncd6 (No NCD) ~      

Food Security 0.009 0.096 0.092 0.001 0.001 

Attain (educational level) -0.047 0.003 <0.001 -0.142 -0.141 

li_urbrur (residence) -0.000 0.000 0.021 -0.000 -0.023 



q04_20 (Smoking) 0.063 0.011 <0.001 0.190 0.058 

Q04_22 (Alcohol consumption) -0.017 0.008 0.037 -0.051 -0.022 

 

Table 12: Parameter Estimates: Covariances 

Variable (NCD) Estimate Std.err P value Std.lv Std.all 

Ncd1~~      

Ncd2 -0.001 0.000 0.001 -0.033 -0.033 

Ncd3 -0.000 0.000 0.505 -0.007 -0.007 

Ncd4 -0.000 0.000 0.384 -0.009 -0.009 

Ncd5 -0.000 0.000 0.245 -0.012 -0.012 

Ncd6 0.006 0.000 0.001 -0.225 -0.225 

Ncd2~~      

Ncd3 -0.000 0.000 0.064 -0.018 -0.018 

Ncd4 -0.001 0.000 0.004 -0.029 -0.029 

Ncd5 -0.001 0.000 <0.001 -0.036 -0.036 

Ncd6 -0.058 0.001 <.0001 -0.710 -0.710 

Ncd3~~      

Ncd4 -0.000 0.000 0.642 -0.005 -0.005 

Ncd5 -0.000 0.000 0.506 -0.007 -0.007 

Ncd6 -0.002 0.000 <0.001 -0.113 -0.113 

Ncd4~~      

Ncd5 -0.000 0.000 0.225 -0.012 -0.012 

Ncd6 -0.008 0.000 <0.001 -0.252 -0.252 

Ncd5~~      

NCd6 -0.013 0.000 <0.001 -0.321 -0.321 
 

Table 46 shows variances of food types and NCD’s. all the food types were significant at 5%. 

Table 13: Parameter Estimates: Variances 

Variable Estimate Std. err P value Std. lv Std. all 

Food Type 1 0.032 0.000 <0.001 0.032 0.958 

Food Type 2 0.138 0.002 <0.001 0.138 0.604 

Food Type 3 0.204 0.003 <0.001 0.204 0.836 

Food Type 4 0.129 0.002 <0.001 0.129 0.596 

Food Type 5 0.140 0.002 <0.001 0.140 0.769 

Food Type 6 0.122 0.002 <0.001 0.122 0.624 

Food Type 7 0.239 0.003 <0.001 0.239 0.958 

Food Type 8 0.121 0.002 <0.001 0.121 0.930 

Food Type 9 0.170 0.003 <0.001 0.170 0.694 

Food Type 10 0.127 0.002 <0.001 0.127 0.818 

Food Type 11 0.142 0.002 <0.001 0.142 0.730 

Food Type 12 0.155 0.002 <0.001 0.155 0.621 

Ncd1=~ncd_1 (diabetes) 0.000   0.000 0.000 

Ncd2=~ncd_2 (High blood 

pressure) 

0.000   0.000 0.000 

Ncd3=~ncd_3 (Cancer) 0.000   0.000 0.000 

Ncd4=~ncd_4 (Cardiac/Heart) 0.000   0.000 0.000 

Ncd5=~ncd_5 (Respiratory illness) 0.000   0.000 0.000 

Ncd6=~ncd_6 (No NCD) 0.000   0.000 0.000 

FS (Food Security) 0.001 0.000 <0.001 1.000 1.000 

NCDs 0.008 0.000 <0.001 0.995 0.995 

NCD2 0.063 0.001 <0.001 0.979 0.979 



NCD3 0.002 0.000 <0.001 0.998 0.998 

NCD4 0.009 0.000 <0.001 0.999 0.999 

NCD5 0.014 0.000 <0.001 0.999 0.999 

NCD6 0.107 0.002 <0.001 0.978 0.978 

 

Figure 4 shows structural equation modelling pathways between type of foods consumed, 

non-communicable diseases and other socio-economic variables. 

 

 

Figure 2: SEM: Foods Consumed, NCDs and Socio-economic variable 

 

1.4. Discussion 

This chapter modelled multiple indicator-multiple causes regression using Structured Equation 

Models (SEM). The study first looked at the prevalence of NCD’s in the country. Non-



communicable diseases have been on a rise, especially in low-middle income countries for the 

past decades (UNSCN, 2018).  High blood pressure was particularly found to contribute largely 

to NCDs in the country. High Blood Pressure or sometimes referred to as hypertension, is a 

common disorder that affects a large proportion of the community. It is mostly asymptomatic 

and is detected on routine exams or after the occurrence of a complication such as a heart attack 

or stroke (Sunil & Gregory, 2021). Globally, the overall prevalence of hypertension in adults 

is estimated to be between 30-45%, with a higher prevalence in men than women (24% and 

20%) respectively (Williams, Mancia, & Spiering, 2018). Other types of NCDs are respiratory 

illnesses, diabetes and cardiac or heart disease and cancer.  

The types of food consumed has a significant contribution to the presence of an NCD in an 

individual. A diet that lacks fruits and vegetables and has a high intake of sodium, low intake 

of nuts and seeds, low in whole grains as well as in seafood-derived omega-3 fatty acids is 

specifically associated with a high prevalence of NCDs (Global Pattern, 2016). This chapter 

analysed the association between NCDs and foods types such as local food (bread, rice, 

noodles, biscuits or any other food made from millet, sorghum, maize, rice, wheat, or any other 

local grain), Meat (beef, pork, lamb, goat, rabbit, wild game, chicken, duck, other birds, liver, 

kidney, heart or other organ meats), Foods made with oil, fat or butter. Among all the food 

types, the meat was found to have a significant effect to NCDs. An analysis done by the 

American Heart Association found that each serving per day of processed meat was associated 

with a 42% higher risk of coronary heart disease and a 19% higher risk of diabetes, while total 

meat intake was associated with a 25% higher risk of coronary heart disease (Micha, Wallace, 

& Mozaffarian, 2010).  

Empirical methods, particularly the Principal Component Analysis (PCA) as a data reduction 

method was used to derive dietary patterns. PCA used the correlation matrix of food intake 

groups to identify common patterns of food consumption in the dataset to account for the 



largest amount of variation in diet.   Fruits, foods such as condiments/tea/coffee and potatoes, 

yams, cassava, or any foods made from roots and tubers accounted for majority of the variation. 

Furthermore, the SEM was derived through the packages “lavaan” and “semPlot” to analyse 

multivariate data with multiple indicators. Food types such as local grains, meat and food made 

from oil were found to be significant at 5% level and associated with NCDs. This concurs with 

the findings by Micha, Wallace, & Mozaffarian (2010). 

1.5. Conclusion 

Multiple data analysis has been on an increase for researchers for the past decades, but models 

accounting for multiple-indicators, multiple cause data are rarely applied for its computational 

difficulties. Mostly, for single counts, the Poisson regression model is used. The limitations of 

Poisson regression model are the assumption of equal mean and variance and restricting the 

count variables to positive. The aim of this study was to model multiple-indicator, multiple-

cause to examine the relationship between foods consumed and NCDs. The study concluded 

that the type of food consumed has a significant contribution to the incidence of an NCD in an 

individual. In this chapter, we employed Structural Equation Models. The SEM analyses 

structural relationships between Non-Communicable Diseases and Foods Consumed and other 

Socio-economic variables.  
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