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Introduction: It is crucial to quantify the disease burden in low- and middle-income 

countries (LMICs) to inform public health efforts and optimise resource allocation. 

However, LMICs frequently encounter obstacles in accessing comprehensive and 

dependable disease registries, which hinders accurate disease burden estimation. Even 

when the registers are present, they may present biased estimates because of barriers to 

access to care. Populations with better access might be over-represented compared to 

those that do not have good access to care. This paper reviews and applies statistical 

insights and approaches to disease modelling using Generalised Linear Geostatistical 

Modelling (GLGM), an extension of Generalised Linear Models (GLM), overcoming 

data limitations and providing valuable insights into the disease burden in LMICs. The 

methods are applied to the mapping of anaemia prevalence in children under five in 

Malawi.  

 

Methods: GLGMs provide a robust framework integrating statistical modelling 

techniques with geospatial analysis to generate precise disease burden estimates. 

Without comprehensive disease registries, GLGMs can offer valuable insights into 

disease patterns and risk factors by integrating available data sources and incorporating 

spatial correlation. This methodology is essential for LMICs, where disease registries 

are frequently incomplete and of limited availability and quality.  

  

GLGMs permit the incorporation of alternative data sources, such as hospital records, 

community/population surveys, and demographic data, to estimate disease burden 

without complete disease registries. GLGMs enable a comprehensive comprehension of 

disease distribution and burden at regional and local levels (i.e., high spatial resolutions 

of up to 1 by 1 km, data permitting) in LMICs by utilising spatial information and 

accounting for covariates such as demographic factors and environmental variables. 

 

In the current analysis, we fit a GLGM to survey data to model the prevalence of anaemia 

in children under five using demographic and health survey (DHS) data from the 2015-

16 Micronutrient Survey, a sub-study of the Malawi Demographic Health Survey 
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(MDHS). We let the design 𝑋 =  𝑥1, … , 𝑥𝑛  denote a set of n distinct spatial locations 

representing the geographical coordinates (i.e., longitudes and latitudes) of sampled 

households, villages or communities in the prevalence survey. At each location 𝑥𝑖, we 

then sample 𝑚𝑖 individuals and perform a test for the disease outcome of interest. 

Conditionally, on a spatial stochastic process 𝑆(𝑥𝑖)and mutually independent zero-mean 

Gaussian latent variables 𝑍𝑖, we assume that 𝑌𝑖 are mutually independent binomial 

variables with a probability of having a positive outcome 𝑝𝑖. A logit link function is then 

used for 𝑝𝑖, assuming the form: 

 

𝑙𝑜𝑔 [
𝑝(𝑥)

1−𝑝(𝑥)
] = 𝑑(𝑥𝑖)′𝛽 + 𝑆(𝑥𝑖) +  𝑍𝑖                                                   Equation 1, 

 

where the vector 𝑑(𝑥𝑖) contains explanatory variables that are frequently acquired from 

remotely sensed images (e.g., population density, rainfall, temperature, and NDVI) or 

that pertain to individual households (e.g., age, education and socioeconomic status). 

The elements of the vector 𝛽 represent regression coefficients associated with each of 

these covariates. To account for unmeasured spatially structured risk factors that 

generate residual spatial correlation among observations, the spatial random effect 𝑆(𝑥𝑖) 

is applied. The unstructured residuals 𝑍𝑖, which are frequently called the “nugget effect”, 

can be interpreted in two different ways: as extra-binomial variation within households 

(e.g., genetic variation) or as small-range spatial variation (on a range shorter than the 

observed minimal distance between locations). From the model in Equation 1, we 

generate summary statistics, as well as measures of uncertainty and other metrics, such 

as exceedance probabilities, to identify hotspots.  

 

Results and discussion: The implementation of GLGM in LMICs has numerous 

benefits. It allows for identifying disease hotspots, evaluating intervention strategies, 

and prioritising scarce resources based on accurate burden estimates (i.e., towards 

areas/populations that need the most resources, thereby playing a critical role in 

advocating equitable access to resources). In addition, GLGM permits the investigation 

of complex relationships between disease outcomes and various covariates, thereby 

shedding light on the underlying drivers of disease burden in LMICs. 

 

Children under 5 underwent anaemia testing, with 4,601 included in the study. The 

prevalence of child anaemia in Malawi is reported at 62.7%. Key factors include the 

child’s age, with older children exhibiting a lower likelihood of anaemia. Those with a 

fever are more likely to have anaemia. Higher levels of maternal education (secondary 

and above) and greater household wealth (middle and above) were found to be protective 

against anaemia. Additionally, children from urban settings showed a lower likelihood 

of having anaemia.  



 

In Figure 1, we depict the geospatial framework for the GLGM process from model 

inputs such as input data, geospatial covariates and the model implementation/process, 

resulting in model summary statistics and measures of uncertainty.  

 
Figure. 1: Flowchart detailing model construction, fitting, and validation process. (a) Input from 

survey data indicates child anaemia point prevalence at the cluster/enumeration area level. (b) 

Geospatial covariates at 5 x 5 km resolution. (c) Prediction (mean) surface for child anaemia at 5 x 5 

km resolution. (d) Uncertainty (standard error) for child anaemia at 5 x 5 km resolution.  
 

Geographically, the prevalence of child anaemia is homogeneously high throughout 

Malawi, with pockets of very low prevalence and very high (i.e., hotspots), as exhibited 

by the 95% confidence interval maps (to be shown in the presentation), with the highest 

quantile placing the country at over 80% prevalence. The northern and southern 

highlands of Malawi exhibit the lowest prevalence rates. The hotspots are identified in 

the low-lying lakeshore districts (Karonga, Nkhata-Bay, Nkhota-kota, Salima, and 

Mangochi), as well as in the southern districts of Chikwawa, Nsanje, and certain areas 

of Mwanza and Neno; see Figure 2. These hotspot areas are places where prevalence 

exceeds 65%, exceeding the national prevalence average. Urban settings also exhibit 

low anaemia prevalence. The model’s uncertainty measure will be presented using 

standard errors, depicting low standard errors close to data collection clusters. 



 

Fig. 2 Anaemia prevalence predictions among children aged under five years in Malawi. 

 

Conclusion: This paper highlights the significance of statistical insights and 

approaches, particularly GLGM, in quantifying disease burden in LMICs, where 

comprehensive disease registries are frequently unavailable or incomplete. By 

leveraging available data sources (such as surveys, i.e., DHS) and integrating spatial 

information, GLGM provides policymakers and public health practitioners with a 

valuable tool for understanding disease burden, allocating resources efficiently, and 

designing targeted interventions in LMIC settings. We have applied the GLGM 

methodology to map the prevalence of anaemia in children under five in Malawi using 

2015/16 demographic and health survey data. 

 


