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Background 

Census projections which rely on datasets from national population and housing censuses provide 
population data required for policymaking and implementation across various countries including low- 
and middle-income countries (LMICs) (UNFPA 2020). However, censuses are often constrained by 
paucity of resources which means that census could be delayed longer than the usual ten (10) years 
intervals in some countries and this has been further exacerbated by the recent COVID-19 pandemic. 
In some contexts where there are significant changes in population size and distribution due to 
heterogeneity in migration, fertility and mortality patterns, census projections could easily become 
outdated and misleading thus requiring alternative sources of population numbers within the intercensal 
period (Tatem, 2022).   

Modelled population estimates which integrate population data (e.g., Microcensus, household survey) 
with satellite-based settlement data (e.g., building footprints) and geospatial covariates (e.g., nighttime 
lights) using advanced statistical models, provide high-resolution population data. The datasets which 
are often available in raster formats at a very fine spatial scale usually 100m by 100m offer the flexibility 
to obtain population counts at any small area unit of interest.  Thus, modelled population estimates are 
alternative sources of population count where census projections are outdated or lacked the level of 
granularity required for supporting decision-making, equitable resource allocation, disasters response, 
disease surveillance, healthcare interventions, and planning of censuses and elections (UNFPA 2020). 

Materials and Methods  

Within the context of ‘bottom-up’ population modelling (e.g., Leasure et al., 2020; Boo et al., 2022; Darin 
et al, 2022), input population data are combined with a stack of geospatial covariates and satellite-
observed settlement data such as building count or built-up area to produce estimate of population 
density. Population predictions are then produced at grid cell level while aggregation to the desired 
areal unit is easily.  
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Figure 1 Schematic representation of the key components of bottom-up population modelling and estimation. 

Moreover, bottom-up population modelling uses Bayesian hierarchical regression modelling framework 
to account for the variabilities in the observed input population data due to complex survey design and 
heterogeneity in population density and distribution. The Bayesian inference approach also means that 
the quantification of uncertainties in parameter estimates is straightforward and implemented via the 
95% credible interval. However, the potential effects of spatial autocorrelation within the observed data 
on the model estimates is yet to be explored. Thus, here we seek to fill this gap by developing a robust 
statistical population modelling technique based on the integrated nested Laplace approximation and 
stochastic partial differential equations frameworks (INLA-SPDE, Rue et al 2009; Lindgren et al, 2011). 
The INLA-SPDE approach offers a fast and efficient approach for including spatial autocorrelation 
defined through a triangulation of the study domain or mesh.  

Simulation study  

We carried out a simulation study designed to assess the accuracy of the population estimates over 

different number of small areal units versus survey coverage combinations. Specifically, how well can 

we estimate the population numbers as the sample size and coverage proportions decrease? To explore 

this, first, for a given grid cell 𝑔, we simulated the grid cell-level data (population 𝑝𝑖𝑔 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑔) and 

building 𝐵𝑖𝑔 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(�̅�𝑔) counts) for the entire study area on a regular unit square and then aggregate 

to area units 𝑖 such that  𝑝𝑖 = ∑ 𝑝𝑖𝑔𝑔  and 𝐵𝑖 = ∑ 𝐵𝑖𝑔𝑔  are the areal-level population and building counts 

respectively. Then the population density 𝐷𝑘 = 𝑝𝑘/𝐵𝑘 is assumed to follow Gamma distribution with 

parameters 𝛼𝑘 and 𝛽𝑘 (𝐷𝑘 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑘, 𝛽𝑘))  with mean 𝜇𝑘 = 𝛼𝑘/𝛽𝑘 and variance 𝜙𝑘 = 𝛼𝑘/𝛽𝑘
2, where 

𝑘 is a generic index representing either a grid cell or an aerial unit. Note that here, area units are 

subnational units of model training which could be a local government area, enumeration area, etc. The 

mean population density 𝜇𝑘 is then assumed to relate to a set of geospatial covariates and spatially 

varying random effects through the link function defined in equation (1) 

𝑙𝑜𝑔 (𝜇𝑘) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝐽

𝐽=1

+ 𝜉(𝑠𝑘) + 𝜁𝑘       (1)  

where  𝛽0 is the intercept parameter which represents the baseline (average) population density when 

the effect of the other predictors is zero; 𝜷 = {𝛽1, . … , 𝛽𝐾} is a vector of unknown fixed effects coefficients 

of the 𝐾 (linear) geospatial covariates that could predict the distribution of the population density such 

as nighttime lights, distance from healthcare facilities, schools, 𝜁𝑘 is the IID random effects and 𝜉(𝑠𝑘) 

is the spatially varying random effects for capturing spatial autocorrelation. The model parameters are 

separately trained at grid cell and aggregated areal levels. They are then used to predict population 

numbers at regular grid cells. Here, for clarity,  grid cell predictions based on grid unit trained models 

are called Grid to Grid (or Grid2Grid), while grid cell predictions based on models trained at the areal 

units are called Area to Grid (or Area2Grid). We compared the accuracy of the predicted population 



numbers based on Grid2Grid and Area2Grid models using a constellation of the model fit indices  in 

Figure 2. The results indicate that our methodology was robust over different number of areal unit-

observation coverage combinations with more accurate predictions over larger survey coverages.  

 

Figure 2. Estimates of the MAE and RMSE values of the models across various levels of missing values for 
Grid2Grid and Area2Grid models 

Application to Household-based data in Cameroon 

Population data provided by the household listing datasets from five nationally representative 

household-based surveys were used to produce small area population estimates in Cameroon, as a 

proof of concept (Figure 3). These model input datasets along with the administrative boundaries/ 

shapefiles were obtained from the Cameroon National Institute for Statistics (NIS). The data were 

collected between 2021 and 2022 based on a 2-stage stratified sampling design across 2290 

Enumeration Areas (EAs) with a total of 2587569 individuals in 509628 households after data 

cleaning. 

 

Figure 3. Spatial distribution of the observed counts predicted counts and the uncertainty across 

Admin level 3 in Cameroon. Uncertainty = (Upper - Lower)/Mean 
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